
	 	 	

	

	 	 	

	

		
 	

Team	1		
Benjamin	Blakely	-	Client	
Benjamin	Blakely	-	Adviser	

Brandon	Richards	-	Frontend	Development	Lead	
Micah	Gwin	-	Python/ML	Development	

Alice	Cheatum	-	Programmer	
Nicklas	Cahill	-	Tester/Programmer	

Michael	Watkins	-	Python/ML	Development	
Carter	Kitelinger	-	Client	Interaction	

	
sdmay23-01@iastate.edu	

https://sdmay23-01.sd.ece.iastate.edu/	
Revised:	04/30/2023	

	

Knowledge	Graphs	for	
Cybersecurity	Reasoning	

FINAL	REPORT	

	 	 	

	

	

	
	
Development	Standards	&	Practices	Used	
An	essential	development	practice	for	our	project	is	the	proper	use	of	version	control	such	as	Git	in	
addition	to	testing	standards.	Everyone	on	the	team	uses	feature	branches	and	pull	requests	when	
writing	code	to	ensure	a	clean	main	branch.	These	pull	requests	are	to	be	reviewed	by	at	least	one	
other	team	member	for	feedback.	In	addition,	pull	requests	can	be	easily	reverted	if	there	is	an	
issue.	Testing	standards	include	minimum	coverage	of	75%	for	each	module	and	100%	of	tests	
should	pass	before	code	is	committed.	Specific	specifications	are	also	considered	in	this	project,	
including:	

• PEP8	
• NIST	
• CVE	
• CVSS	

	

Summary	of	Requirements	

• The	product	should	use	no	less	than	3	sources	for	cybersecurity	information.	
• The	product	should	crawl	sources	for	new	information	at	least	once	a	day.	
• The	product	should	extract	information	using	HTML	parsing,	OCR,	and/or	API.	
• The	product	should	perform	Information	Extraction	by	using	a	trained	model.	
• The	product	should	produce	a	knowledge	graph	containing	cybersecurity	entities	and	

relations.	
• The	product	should	persist	this	knowledge	graph	using	the	graph	database	Neo4j.	
• Extensible	by	future	developers	by	using	interfaces	and	writing	modular	code.	
• Code	should	have	documentation	on	function	definitions	and	up-to-date	README.	
• The	crawl	speed	should	be	rated	as	to	not	disturb	the	resources	of	the	sources.	
• Only	open-source	libraries	should	be	used	in	the	product.	
• Low-medium	power	GPU	cluster	for	NER	model	training	
• Responses	to	queries	should	support	being	displayed	in	graph	or	tree	form.	
• The	user	should	be	able	to	build	queries	using	date,	company,	and	vulnerability	filters.	
• Query	results	should	be	returned	in	less	than	30	seconds.	

	

Applicable	Courses	from	Iowa	State	University	Curriculum		
• COMS	311	

Executive	Summary	

	 	 	

	

	

• CprE	310	
• ENG	314	
• COMS	309	
• COMS	319	
• CYBE	230	
• CYBE	231	

New	Skills/Knowledge	acquired	that	was	not	taught	in	courses	
• Python	
• Machine	Learning	
• Web	Scraping	
• Docker	
• MongoDB	
• TypeScript	
• Neo4j	
• Python	Libraries:	BeautifulSoup,	scrapy,	coverage,	unittest,	spaCy	

 	

	 	 	

	

	

Table	of	Contents	
1	 Team	..	6	

1.1	 Team	Members	...	6	

1.2	 Required	Skill	Sets	for	Your	Project	..	6	

1.3	 Skill	Sets	covered	by	the	Team	..	6	

1.4	 Project	Management	Style	Adopted	by	the	team	...	6	

1.5	 Initial	Project	Management	Roles	...	6	

2	 Introduction	...	7	

2.1	 Problem	Statement	..	7	

2.2	 Intended	Users	and	Uses	...	7	

2.2.1	Cybersecurity	Researcher	..	7	

2.2.1.1	Persona	...	7	

2.2.1.2	Empathy	Map	...	8	

2.2.2	Incident	Responder	...	9	

2.2.2.1	Persona	...	9	

2.2.2.2	Empathy	Map	..	9	

2.2.3	Sys	Admin	..	10	

2.2.3.1	Persona	..	10	

2.2.3.2	Empathy	Map	..	11	

2.3	 Requirements	&	Constraints	...	12	

2.4	 Engineering	Standards	..	12	

3	Project	Plan	...	13	

3.1		Project	Management/Tracking	Procedures	...	13	

3.2	Task	Decomposition	..	13	

3.3	Project	Proposed	Milestones,	Metrics,	and	Evaluation	Criteria	...	14	

3.4	Risks	And	Risk	Management/Mitigation	...	15	

4		Design	...	16	

4.1	Design	Context	...	16	

4.1.1	Broader	Context	...	16	

4.1.2	Prior	Work/Solutions	..	17	

4.2	Design	Exploration	..	17	

4.3	 Proposed	Design	..	17	

	 	 	

	

	

4.3.1	Overview	..	17	

4.3.2	Detailed	Design	and	Visual(s)	...	18	

4.3.2.1	Scraper	...	18	

4.3.2.2	Parser	..	18	

4.3.2.3	Knowledge	Graph	..	20	

4.3.2.4	Frontend	..	20	

4.3.3	Functionality	...	21	

4.3.4	Areas	of	Concern	and	Development	...	21	

4.4	Technology	Considerations	..	22	

4.5	Design	Analysis	..	23	

5		Testing	..	23	

5.1	Unit	Testing	..	24	

5.2	Interface	Testing	..	25	

5.3	 Integration	Testing	..	25	

5.4	 System	Testing	...	25	

5.5	 Regression	Testing	...	25	

5.6	 Acceptance	Testing	...	26	

5.7	 Security	Testing	..	26	

5.8	 Results	...	26	

6		Implementation	..	29	

6.1	Evolution	Of	Design	...	30	

8	Closing	Material	...	33	

8.1	Conclusion	..	33	

8.2	References	..	33	

8.3	Appendices	...	33	

8.3.1	Operation	Manual	...	33	

8.3.1.1	Brat	...	33	

8.3.1.2	Trainer	...	34	

8.3.1.3	Scraper	...	34	

8.3.1.4	Parser	...	35	

8.3.1.5	Knowledge	Graph	...	35	

8.3.1.6	Frontend	..	36	

	 	 	

	

	

8.3.1.7	Contribution	...	36	

8.3.2	Alternative	Versions	of	the	Design	..	36	

8.3.3	Other	Considerations	...	37	

	

	

	

 	

	 	 	

	

	

1 Team	

1.1 TEAM	MEMBERS	

• Brandon	Richards	
• Micah	Gwin	
• Alice	Cheatum	
• Nicklas	Cahill	
• Michael	Watkins	
• Carter	Kitelinger	

1.2 REQUIRED	SKILL	SETS	FOR	YOUR	PROJECT	

• Python	Programming	Experience		
• React		
• Cyber	Security	Knowledge		
• TypeScript		
• Machine	Learning	Knowledge		
• Docker		
• MongoDB	
• AWS	Architecture	

1.3 SKILL	SETS	COVERED	BY	THE	TEAM	

• Python	Programming	Experience	-	All		
• React	–	Brandon,	Micah,	Michael		
• Cyber	Security	Knowledge	–	Alice,	Nicklas,	Carter,	Michael		
• TypeScript	–	Brandon,	Michael		
• Machine	Learning	Knowledge	-	Michael		
• Docker	–	Brandon,	Michael		
• MongoDB	–	Michael	
• AWS	Architecture	–	Michael,	Micah,	Brandon	

1.4 PROJECT	MANAGEMENT	STYLE	ADOPTED	BY	THE	TEAM	

Our	team	has	chosen	agile	as	a	project	management	style	because	our	project	goal	of	developing	a	
knowledge	graph	will	require	many	iterations.	New	knowledge	and	metrics	that	we	acquire	during	
sprints	will	help	us	better	understand	and	plan	for	the	next	set	of	tasks	we	need	to	perform	in	the	
next	sprint.	

1.5 INITIAL	PROJECT	MANAGEMENT	ROLES	

• Brandon	Richards	—	Frontend	Development	Lead	
• Micah	Gwin	—	Python/ML	Development	
• Alice	Cheatum	—	Programmer	
• Nicklas	Cahill	—	Tester/Programmer	
• Michael	Watkins	—	Python/ML	Development	

	 	 	

	

	

• Carter	Kitelinger	—	Client	Interaction	

2 Introduction	

2.1 PROBLEM	STATEMENT	

Cybersecurity	threat	reporting	is	currently	spread	out	across	multiple	sources	and	written	in	a	non-
standardized	format.	Information	is	updated	frequently,	changing	the	landscape	and	requiring	
much	effort	to	parse	and	read	for	relevant	information.	Cybersecurity	researchers,	Incident	
Responders,	and	System	Administrators	need	to	be	able	to	efficiently	query	information	about	a	
specific	software,	malware,	threat,	etc.,	as	well	as	new	and	emerging	ones.	Generating	a	
Cybersecurity	Knowledge	Graph	(CSKG)	that	contains	relevant	datapoints	will	allow	for	efficient	
information	storage	and	querying	capability.	

	

	

Figure:	Example	Cybersecurity	Knowledge	Graph	

	

2.2 INTENDED	USERS	AND	USES	

2.2.1	CYBERSECURITY	RESEARCHER	

2.2.1.1	PERSONA	

Demographics	

- Post-grad	students	

Hobbies	and	interests	

- Cybersecurity	
- Data	enthusiasts	
- Tech	savvy	

Motivations	(Who	do	they	want	to	be?	What	do	they	want	to	do?	How	do	they	want	to	feel?)	

- They	want	to	efficiently	find	up-to-date	information	about	new	or	specific	cybersecurity	
threats.	

- They	want	their	computer	systems	to	feel	secure.	

Personality	and	emotions	

- Paranoia?	
- Intelligent	
- Flexible	

Values	(What	is	important	to	their	identity?)	

	 	 	

	

	

- Anonymity	
- Privacy	
- Informed	

2.2.1.2	EMPATHY	MAP	

Who?	Cybersecurity	Researcher	

What	/	need	to	do?	

- Be	knowledgeful	of	relevant	current	threats.	
- Understand	context	and	implication	of	threats	

See?	

- News	articles	/	research	papers	of	new	threats	
- Attacks	against	enterprise	and	personal	computer	systems.	

Say?	

- I	wish	there	was	a	quicker	and	easier	way	to	find	this	stuff!	

Hear?	

- Other	researchers	talking	about	cybersecurity.	
- Queries	about	how	a	cybersecurity	threat	affects	a	specific	entity	(company,	university,	

software,	etc.)	

Do?	

- Look	at	scattered	reporting	of	cybersecurity	threat.	
- Parsing	for	relevance.	

	

Think?		

- I	hate	having	to	parse	through	many	publications	to	find	relevant	information	
- I	hate	having	to	maintain	a	list	of	reliable	sources	

Feel?		

- Determined		
- Curious	
- Frustrated		
- Annoyed		
- Overwhelmed	

Need	Statement:	

A	Cybersecurity	Researcher	needs	a	way	to	parse	relevant	information	quickly	and	efficiently	
because	the	landscape	changes	rapidly	and	sources	are	spread	out	and	contain	irrelevant	details.	

	

	 	 	

	

	

Benefit:	

Researchers	would	see	a	reduction	in	time	spent	searching	for	new	and	related	information,	leading	
to	better	context	and	comprehension.	

	

2.2.2	INCIDENT	RESPONDER	

2.2.2.1	PERSONA	

Demographics	

- College	Grad	
- Various	Certificates	

Hobbies	and	interests	

- Penetration	testing	
- Keeping	networks	secure	
- Cybersecurity	

Motivations	(Who	do	they	want	to	be?	What	do	they	want	to	do?	How	do	they	want	to	feel?)	

- Protecting	business	operations	
- Protecting	client	information		

Personality	and	emotions	

- Investigative	
- Curious	
- Defensive	
- Eye	for	small	details	

Values	(What	is	important	to	their	identity?)	

- Intelligence	
- Competence	
- Integrity	

	

2.2.2.2	EMPATHY	MAP	

Who?	Incident	Responder	

What	/	need	to	do?	

- Respond	to	network	intrusions,	access	policy	violations,	cybersecurity	threats	
- Defend	systems	owned	by	their	employers	from	attacks	in	the	future	

See?	

- Current	threats	or	intrusions	to	the	company/business	they	are	working	for	

	 	 	

	

	

Say?	

- “I	wish	I	knew	of	a	quick	and	easy	way	to	find	information	about	this	new	vulnerability!”	

Hear?		

- Is	our	infrastructure	safe?	
- We’ve	had	a	network	intrusion;	you	need	to	fix	this.	

Do?	

- Investigate	and	patch	exploited	systems	

Think?		

- Which	software	or	hardware	flaw	is	responsible	for	this	intrusion?	
- Who	attacked	us?	

Feel?		

- Attacked	
- Defensive	
- Rushed	
- Panicked	

	

Need	Statement:	

An	Incident	Responder	needs	a	way	to	find	vulnerabilities	quickly	because	investigating	and	
patching	cybersecurity	threats	requires	up-to-date	information	on	a	time	crunch.	

	

Benefit:	

Quicker	information	gathering	and	analysis	results	in	a	faster	response	time	to	threats	and	stronger	
defenses	in	place	for	next	time.	

	

2.2.3	SYS	ADMIN	

2.2.3.1	PERSONA	

Demographics	

- At	least	Highschool	Grad	
- Certificates	

Hobbies	and	interests	

- 	Software	or	hardware	systems	
- Networks	
- Servers	
- Maybe	a	mild	interest	in	cybersecurity	

	 	 	

	

	

Motivations	(Who	do	they	want	to	be?	What	do	they	want	to	do?	How	do	they	want	to	feel?)	

- Maintain	the	systems	they	are	responsible	for,	focusing	on	uptime	and	usability.	

Personality	and	emotions	

- Meticulous	
- Overworked	
- Problem	solver	

Values	(What	is	important	to	their	identity?)	

- Efficiency	
- Network/server	uptime	
- Accessibility	
- Supporting	end-users	

2.2.3.2	EMPATHY	MAP	

Who?	Sys	Admin	

What	/	need	to	do?	

- Keep	the	systems	they	are	responsible	for	secure	
- Know	which	threats	are	most	relevant	
- Balance	security	with	usability	of	the	systems	

See?	

- News	articles	about	new	vulnerabilities,	exploits,	and	attacks	

Say?	

- Why	isn’t	this	working?	
- What	new	vulnerabilities	are	there	for	the	software	we	run?	

Hear?	

- Why	isn’t	this	working?	
- Wasn’t	this	supposed	to	be	secure?	
- I	thought	you	maintained	this?	

Do?	

- Maintain	hardware	and	software	on	many	systems	

Think?		

- I	dislike	having	to	keep	up	with	the	constant	cybersecurity	knowledge	while	still	needing	
to	maintain	systems	

Feel?		

- Overwhelmed	

	 	 	

	

	

- Unfamiliar	

Need	Statement:	

A	Sys	Admin	needs	a	way	to	learn	about	current	cybersecurity	threats	without	in-depth	knowledge	
because	their	systems	need	to	be	secure	but	they	also	have	other	things	to	focus	and	work	on.	

Benefit:	

Can	save	time	understanding	cybersecurity	problems,	allowing	for	communication	with	others,	and	
making	more	time	for	administrating	systems.	

	

2.3 REQUIREMENTS	&	CONSTRAINTS	

Functional	Requirements	

- The	product	should	use	no	less	than	3	sources	for	cybersecurity	information.	
- The	product	should	crawl	sources	for	new	information	at	least	once	a	day.	
- The	product	should	extract	information	using	HTML	parsing,	OCR,	and/or	API.	
- The	product	should	perform	Information	Extraction	by	using	a	trained	model.	
- The	product	should	produce	a	knowledge	graph	containing	cybersecurity	entities	and	

relations.	
- The	product	should	persist	this	knowledge	graph	using	the	graph	database	Neo4j.	

Non-Functional	Requirements	

- Extensible	by	future	developers	by	using	interfaces	and	writing	modular	code.	
- Code	should	have	documentation	on	function	definitions	and	up-to-date	README.	
- The	crawl	speed	should	be	rated	as	to	not	disturb	the	resources	of	the	sources.	
- Only	open-source	libraries	should	be	used	in	the	product.	

Resource	Requirements	

- Low-medium	power	GPU	cluster	for	NER	model	training	

Aesthetic	Requirements	

- Responses	to	queries	should	support	being	displayed	in	graph	or	tree	form.	

User	Experiential	Requirements	

- The	user	should	be	able	to	build	queries	using	date,	company,	and	vulnerability	filters.	
- Query	results	should	be	returned	in	less	than	30	seconds.	

	

2.4 ENGINEERING	STANDARDS	

- PEP8	

	 	 	

	

	

o PEP	8	is	the	official	style	guide	for	Python	code.	Our	team’s	code	will	follow	this	
style	guide	to	ensure	maximum	readability	and	avoid	developer	issues	due	to	
different	coding	styles	in	the	same	project.		

- NIST	
o NIST	has	many	definitions	on	various	cybersecurity	topics	that	we	will	utilize	in	

our	project.	Our	project	will	provide	quick	and	easy	information	that	has	ties	to	
NIST	Cybersecurity	Framework	(CSF)	and	NIST	Risk	Management	Framework	
(RMF),	thus	these	standards	will	be	incorporated	into	the	end	product.	

- CVE	
o Common	Vulnerabilities	and	Exposures	is	a	standard	for	computer	security	flaws	

our	project	will	need	to	follow	to	obtain,	process,	and	serve	our	cybersecurity	
information.	Using	CVE	will	keep	vulnerabilities	tied	to	their	initial	reports,	which	
include	a	description	of	the	flaw,	making	it	easier	for	users	to	follow	a	chain	of	
information	from	our	knowledge	graph.	

- CVSS	
o The	Common	Vulnerability	Scoring	System	will	be	used	in	our	project	due	to	our	

interaction	with	vulnerabilities.	This	framework	has	three	metrics	that	are	used	to	
rate	the	severity	of	vulnerabilities	our	knowledge	graph	will	contain.	We	will	
interpret	and	display	data	in	a	CVSS	format	to	remain	consistent	with	other	
sources	of	information	and	improve	comprehension	by	our	users.	

	

3	Project	Plan	

3.1		PROJECT	MANAGEMENT/TRACKING	PROCEDURES	

Our	team	has	chosen	agile	as	a	project	management	style	because	our	project	goal	of	developing	a	
knowledge	graph	will	require	many	iterations.	New	knowledge	and	metrics	that	we	acquire	during	
sprints	will	help	us	better	understand	and	plan	for	the	next	set	of	tasks	we	need	to	perform	in	the	
next	sprint.	

Our	team	is	going	to	use	Git	as	a	VCS	and	GitHub	to	host	our	repository.	We	will	also	be	using	JIRA	
as	a	ticketing	system	to	better	track	tasks,	subtasks,	sprints,	backlog	items,	and	responsibility	for	
each	task.	

	

3.2	TASK	DECOMPOSITION	

1. Determine	list	of	sources	to	obtain	news	articles	and	blog	posts.	
a. Inspect	sources	for	legitimacy	and	reputation	
b. Record	URLs	of	main	page	and/or	specific	pages	of	interest	(e.g.,	Malware	blog)	

2. Develop	scraper	to	obtain	news	articles,	blog	posts,	etc.,	using	Scrapy	
a. Select	a	programming	language	
b. Select	libraries	to	perform	downloads	and	parsing	of	HTML	
c. Create	file	specification	for	storing	list	of	sources	

	 	 	

	

	

d. Write	code	for	scraper	
e. Write	testing	code	for	scraper	
f. Output	artifacts	for	later	use	by	NER	model	
g. Containerize	with	Docker	

3. Develop	one	or	more	methods	to	clean	up	articles	(may	vary	depending	on	type	of	article)	
a. Research	existing	methods	for	cleaning	up	irrelevant	information	
b. (Potentially)	Manually	annotate	relevant	vs.	irrelevant	data	in	documents	
c. Verify	on	test	cases	that	relevant	information	isn’t	being	destroyed	

4. Extract	relevant	entities	(vulns,	companies,	software,	exploits,	etc.)	and	the	relationships	
between	them	

a. Research	existing	annotation	techniques	and	cybersecurity-specific	NER	models	
b. Determine	if	we	need	to	train	custom	NER	model	
c. (Potentially)	Train	NER	model:	

i. Manually	annotate	set	of	documents	from	selected	sources	
ii. Perform	supervised	machine	learning	to	train	NER	model	

d. Generate	entities	and	relationships	from	cleaned-up	source	information	
5. Use	extracted	entities	and	relationships	to	generate	knowledge	graph	

a. Collect	output	from	Information	Extraction	
b. Insert	into	graph	database	

6. Run	pipeline	created	in	steps	2-5	periodically	and	continuously	on	new	articles	
a. Create	job	to	run	at	interval	
b. Determine	if	new	articles	of	interest	have	been	posted	
c. Run	new	articles	through	pipeline	

7. Develop	a	web	interface	to	run	queries	on	the	graph	
a. Design	

i. Develop	prototype	
ii. Receive	feedback	from	client	

b. Develop	
i. Select	framework	to	make	website	
ii. Create	API	to	query	knowledge	graph	
iii. Implement	designs	from	prototype	
iv. Implement	filters	to	query	the	graph	
v. (Stretch	goal)	Use	natural	language	to	query	the	graph	

	

3.3	PROJECT	PROPOSED	MILESTONES,	METRICS,	AND	EVALUATION	CRITERIA	

1. Sources	
1.1. 3	or	more	sources	have	been	selected	to	scrape	for	information	

2. Scraper	
2.1. Scraper	can	download	and	parse	input	sources.	
2.2. Runs	inside	Docker	container.	
2.3. Identifies	more	recent	unprocessed	articles	with	100%	accuracy.	

3. Article	cleanup	
3.1. Articles	achieve	removing	unnecessary	information	with	25%	accuracy.	
3.2. Articles	achieve	removing	unnecessary	information	with	50%	accuracy.	

4. Extract	entities	and	relationships	

	 	 	

	

	

4.1. Software	can	identify	subjects	(companies,	operating	systems,	vulnerability,	etc.)	
with	75%	accuracy.	

4.2. Software	can	identify	relationships	(vulnerability	works	on	this	OS	and	application	
run	by	this	company)	with	50%	accuracy.	

5. Generate	knowledge	graph	
5.1. Contains	more	than	15	entities	including	companies,	operating	systems,	

applications,	malware,	etc.).	
5.2. Nodes	have	properly	labeled	edges	with	75%	accuracy.	

6. Pipeline	periodic	and	continuous	running	
6.1. The	job	runs	on	the	specific	interval	100%	of	the	time.	

7. Web	Interface	
7.1. Prototype	delivered	to	client	with	80%	satisfaction	(satisfaction	to	be	quantified	

with	rating	survey).	
7.2. API	created	to	query	100%	of	knowledge	graph	entities	and	relationships.	
7.3. Filtering	by	Company,	Application,	OS,	Vulnerability,	or	Malware	can	be	

performed.	
7.4. (Stretch)	Natural	Language	query	can	serve	intended	results	50%	of	the	time.	

3.4	RISKS	AND	RISK	MANAGEMENT/MITIGATION	

Description	 Likelihood	 Consequences	 Risk	 Mitigation	

Training	uses	too	
many	resources	

Unlikely	 Major	 High	 Optimize	code,	set	
resource	usage	limits,	
allocate	more	GPUs	for	
cluster		

Model	is	trained	
incorrectly	

Moderate	 Moderate	 High	 Start	early,	involve	
Michael	in	most	
decisions	due	to	
experience,	Research	

Source	is	too	
difficult	to	perform	
extraction	

Moderate	 Moderate	 High	 Pre-scout	source’s	
format,	plan	extraction	
logic	ahead	

Resources	too	high	
to	display	query	

Moderate	 Moderate	 High	 Limit	number	of	
displayed	responses	

Sources	go	down	
or	block	our	traffic	
because	of	too	

Likely	 Major	 Extreme	 Strict	rate	limits	

	 	 	

	

	

much	scraping	too	
fast	

	

4		Design	

4.1	DESIGN	CONTEXT	

4.1.1	Broader	Context	

Our	project	is	primary	focused	on	two	communities:	security	researchers	in	academia	and	
information	security	roles	in	industry.	Although	these	communities	will	be	directly	affected	by	our	
project,	the	entire	world	will	be	indirectly	affected	as	well.	The	increased	efficiency	of	gathering	
cybersecurity	knowledge	will	allow	our	target	communities	to	better	do	their	job	and,	increasing	
safety,	security,	privacy,	and	integrity	in	all	software	applications.	As	societies	around	the	world	
grow	more	dependent	on	technology,	our	goal	is	to	make	the	software	they	interact	with	safer.	

Area	 Considerations	

Public	health,	
safety,	and	
welfare	

All	users	of	a	technology	companies'	products	are	indirectly	affected	by	our	
project	due	to	the	utility	we	provide	information	security	staff.	Helping	these	
roles	increases	the	public	safety	and	welfare	in	their	interaction	with	
technology.	It	could	also	harm	job	opportunities	of	these	positions,	as	an	
effective	product	would	require	less	staff	to	research	and	fix	problems.	

In	the	same	way,	researchers’	use	of	our	product	will	also	improve	the	general	
populations’	interaction	with	technology	utilizing	their	discoveries.	

Global,	
cultural,	and	
social	

Our	project	accurately	reflects	the	values	of	our	target	cultural	groups	
including	security	researchers	in	academia	and	information	security	staff	in	
industry.	Using	extracted	information	to	build	a	knowledge	graph	that	can	be	
queried	is	in	line	with	practices	to	streamline	cybersecurity	information	
gathering.	

Environmental		 The	environmental	effects	of	this	project	are	indirect.	The	software	will	be	
executed	and	hosted	on	servers	that	use	a	lot	of	electricity	of	unknown	origin	
(renewable	vs.	nonrenewable).	

There	is	a	potential	impact	of	training	ML	models	with	GPU	clusters	in	terms	
of	energy	usage,	although	our	project	would	have	to	scale	magnitudes	larger	
for	this	to	become	a	reasonable	concern.	

	 	 	

	

	

Economic	 This	project	being	successful	will	have	an	impact	of	increased	productivity	by	
information	security	roles	in	industry	by	getting	them	access	to	recent,	
condensed,	and	relevant	information	quicker.		

One	pending	consideration	is	if	the	project	proves	extremely	useful	what	
obligation	we	have	to	make	it	available	to	good	actors	in	terms	of	cost.	

	

4.1.2	Prior	Work/Solutions	

There	have	been	research	papers	on	the	idea	of	using	Knowledge	Graphs	to	store	information	in	the	
Cyber	Security	domain.	One	example	is	“TINKER:	A	framework	for	Open	source	Cyberthreat	
Intelligence”.	This	research	paper	delves	into	creating	a	knowledge	graph	that	is	used	primarily	to	
“infer	threat	information	from	the	[cybersecurity]	text	corpus”.	This	differs	from	our	project	in	that	
it	attempts	to	strictly	capture	malware	information	from	CTIs	(Cyber	Threat	Intelligence).	Our	
project	is	aimed	more	for	researchers	and	industry	professionals	to	be	able	to	query	a	knowledge	
graph	of	many	entity-types	(companies,	vulnerably,	malware)	that	is	consistently	updating	with	
new	information	automatically.	

Some	of	the	pros	and	cons	of	our	target	solution	would	be:	

1. Pro:	Web	Interface	with	query	input	and	data	visualization	
2. Pro:	Updating	periodically	(e.g.,	every	hour)	with	new	cybersecurity	information	
3. Con:	Information	sourced	from	reputable	cybersecurity	blogs	instead	of	CTIs.	

Our	project	is	not	following	previous	work	of	any	Senior	Design	project.	

4.2	DESIGN	EXPLORATION	

4.3 PROPOSED	DESIGN	

4.3.1	Overview	

Our	current	design	includes	multiple	software	components,	each	with	a	role	to	play	to	achieve	our	
overall	goal.	One	component	is	responsible	for	collecting	data	from	external	sources,	another	for	
extracting	subjects	and	relationships	between	them	from	that	data,	and	another	for	saving	this	
information	in	a	graph.	This	design	works	as	a	pipeline	to	start	with	raw	text	information	and	end	
up	with	a	graph	that	can	be	queried	for	information.	One	last	component	is	a	frontend	that	users	
can	use	to	perform	the	queries.	

	 	 	

	

	

	

4.3.2	Detailed	Design	and	Visual(s)	

4.3.2.1	Scraper	

The	scraper	is	a	Python	module	responsible	for	inputting	a	list	of	sources	and	outputting	text	files.	
The	source	list	input	should	be	in	JSON	format	and	be	an	array	of	objects,	each	with	a	“url”	
property	that	points	to	the	URL	of	the	main	feed.	Each	output	text	file	should	be	the	text	from	an	
article	not	yet	scraped	from	the	inputted	source	list.	Scraping	should	be	done	using	the	Python	
library	Scrapy,	and	extraction	of	the	scraped	text	should	be	done	using	the	Python	library	
BeautifulSoup.	The	next	subcomponent	of	the	scraper	is	the	“Cleanup”.	The	input	will	be	the	
extracted	text	and	the	output	will	be	text	without	irrelevant	information.	This	will	require	little	or	
much	effort	depending	on	the	source	and	thus	should	be	examined	on	a	source-by-source	basis.	
The	last	subcomponent	of	the	scraper	is	a	database	to	store	information	including	the	URL	fetched,	
the	article	text,	and	a	timestamp	of	when	it	was	collected.	

	

4.3.2.2	Parser	

The	parser	is	a	Python	module	that	takes	input	from	the	scraper	(text	files)	and	performs	Named-
Entity-Recognition	(NER)	and	Relationship	Extraction	(RE).	These	two	jobs	allow	for	the	creation	
of	a	graph	structure	with	Named	Entities	as	the	vertices	and	relationships	as	the	edges.	The	output	
of	this	component	are	entities	and	relationships	for	the	knowledge	graph.	

The	NER	subcomponent	will	extract	the	following	types	of	entities	from	text:	

- Organization	

	 	 	

	

	

- Vulnerability	-	CVEs	or	named/known	exploits	
- Threat	Group	-	Known	malicious	groups	
- Malware	Type	-	Virus',	Trojans,	Ransomware,	etc.	
- System	-	OS’s,	Hardware,	Software	
- Protocol,	with	the	version	if	applicable	

The	RE	subcomponent	will	extract	the	following	relationships	between	entities:	

- manages	
o Organization	->	System	

- attackVector	
o Vulnerability	->	System	

- used	
o System,	Protocol,	Filetype,	Filename	->	Organization,	Threat	Group,	System	
o Port	->	Protocol,	System	
o Vulnerability,	URL,	IP	->	Threat	Group,	Malware	Name	

- attacked		
o Threat	Group	->	Organization	

- exploits	
o Vulnerability	->	Protocol	

- isType		
o Vulnerability	->	Malware	Type	

	

The	parser	currently	has	a	couple	of	defined	interfaces.	They	are	as	follows:	

- AbstractInput	
o Description:	Reads	input	from	implementation-dependent	source	(MongoDB,	file,	

hardcoded,	etc.)	
o Methods:	

§ get_inputs()	->	list[str]	
- AbstractParser	

o Description:	Performs	IE	(NER	+	RE)	on	input	and	outputs	entities	and	
relationships	

o Methods:	
§ parse(input:	str)	->	ParserResult	

- AbstractOutput	
o Description:	Outputs	entities	and	relationships	in	an	implementation-dependent	

way	(file,	database,	etc.)	
o Methods:	

§ output(result:	ParserResult)	->	bool	
- ParserResult	

o entities:	list[str]	

	 	 	

	

	

o relationships:	list[ParserRelationship]	
- ParserRelationship	

o from:	str	
o to:	str	
o type:	str	

	

4.3.2.3	Knowledge	Graph	

The	Knowledge	Graph	component	will	accept	entities	and	relationships	as	input	and	store	these	
into	a	graph	database.	Our	current	choice	for	the	database	is	Neo4j	as	it	offers	good	performance,	
no	cost,	and	is	graph	based.	The	entities	will	be	stored	as	vertices	in	the	graph	(called	Nodes	in	
Neo4j)	and	relationships	between	entities	will	be	stored	as	edges	in	the	graph	(called	
“relationships”	in	Neo4j).	This	should	be	running	in	a	Docker	container	but	have	an	exposed	API	
that	the	Parser	is	able	to	use	to	insert	these	entities	and	relationships.	It	should	also	expose	an	API	
to	perform	queries	on	the	graph,	such	as	getting	all	nodes	related	to	a	node	by	some	relationship.	

	

4.3.2.4	Frontend	

The	frontend	of	our	project	will	be	a	React	web	application	written	in	TypeScript.	The	web	app	will	
accept	user	input	specifying	what	information	should	be	queried	and	will	perform	an	API	request	
on	the	Knowledge	Graph.	An	example	could	be	a	cybersecurity	researching	searching	for	
“Samsung”	and	getting	back	all	or	a	limited	set	of	nodes	connected	to	it,	such	as	recent	attacks	
launched	against	them.	It	should	then	display	the	result	in	a	graph	or	tree	format.	

	 	 	

	

	

	

Figure:	Frontend	Mockup	

	

4.3.3	Functionality	

Our	design	is	intended	to	operate	by	the	user	visiting	a	web	application.	The	user	will	enter	in	a	
query,	such	as	a	company,	vulnerability,	and/or	timeframe	they	are	searching	for,	and	the	
Knowledge	Graph	will	be	queried	with	those	parameters.	The	user	will	be	able	to	navigate	around	
the	Knowledge	Graph	by	dragging	the	mouse	in	different	directions	to	explore	the	connections	
between	nodes.	The	user	may	also	choose	to	have	their	results	displayed	in	a	Tree	View	rather	than	
a	Graph	View.	

If	the	user	enters	in	a	query	for	which	there	are	no	results,	they	will	be	prompted	that	no	results	
exist.	In	the	case	of	an	error	in	the	query,	the	user	will	be	prompted	that	their	query	was	completed	
unsuccessfully	along	with	any	additional	error	information	from	the	server.	

Periodically	the	pipeline	will	run	again,	scraping	new	articles,	parsing	them,	and	inserted	the	
extracted	information	into	the	knowledge	graph.	The	interval	is	currently	defined	as	1	hour,	
although	this	is	subject	to	change.		

4.3.4	Areas	of	Concern	and	Development	

The	current	design	completely	satisfies	the	client	requirements	and	moderately	meets	the	expected	
needs	of	our	users.	The	area	of	most	concern	will	be	the	development	of	the	Named-Entity-
Recognition	model	and	performing	Relation	Extraction	due	mostly	to	many	unknowns	we	have	yet	

	 	 	

	

	

to	encounter.	Performing	NER	and	RE	is	on	track	to	be	the	most	complex	portion	of	the	project.	
The	immediate	plan	for	developing	the	solution	to	this	component	is	beginning	testing	whether	we	
need	to	train	our	own	models	to	perform	these	steps	or	if	we	may	take	advantage	of	existing	
technologies	such	as	CyNER.	If	we	can	use	a	previously	trained	model	for	the	NER	step,	this	would	
drastically	decrease	the	level	of	effort	needed	for	a	successful	Parser	component.	We	currently	have	
no	questions,	as	our	client	and	faculty	adviser	has	graciously	provided	us	with	scientific	papers	
going	into	details	about	different	attempts	at	Cybersecurity	Knowledge	Graphs	and	some	
Information	Extraction	on	a	text	corpus.	

4.4	TECHNOLOGY	CONSIDERATIONS	

Scraping	–	scrapy	

For	scraping	we	chose	the	scrapy	library.	It	is	one	of	the	most	popular	Python	web-crawling	
frameworks.	It	features	a	wide	variety	of	inbuilt	tools	to	help	us	collect	the	data	we	need.	
Ultimately,	we	chose	it	because	of	the	rich	community	and	how	widespread	the	framework	is.		

One	of	the	weaknesses	of	scrapy	is	how	basic	its	parsing	tools	are.	Scrapy	is	great	for	collecting	data	
from	websites,	but	not	the	best	at	parsing	that	data.	A	solution,	which	we	are	implementing	is	to	
use	another	framework	to	parse	the	data.	We	chose	BeautifulSoup4	due	to	its	rich	feature	set,	some	
team	member’s	prior	knowledge	and	its	widespread	usage.	

NER	–	spacy	

Spacy	will	be	a	great	library	to	assist	with	NER	and/or	RE	due	to	the	good	support	available	and	
that	some	team	members	and	our	advisor	have	some	background	in	this	framework.	There	exist	
other	options	such	as	the	NLTK,	and	cloud	offerings.	We	did	not	want	to	use	a	proprietary	
framework	like	the	Google	Cloud	Natural	Language	API	to	keep	our	project	open	source	and	free.	

NLTK	is	more	academic	focused	that	spacy.	It	is	meant	to	be	a	toolbox	of	machine	learning	tools	
for	academic	use,	while	spacy	is	more	oriented	towards	developers.	Spacy	has	a	richer	set	of	tools	to	
help	us	accomplish	our	goal	faster	and	more	efficiently.	NLTK	focuses	just	on	strings,	while	Spacy	
focuses	on	objects.	Most	of	our	data	is	objects,	so	spacy	was	the	better	fit.	

Database	–	SQL	(column	based)	vs	Neo4j	(graph	based)	

The	decision	to	use	a	graph-based	database	was	a	very	easy	decision.	We	are	building	a	graph,	so	a	
graph-based	database	fits	our	data	type.	Graph-based	databases	use	more	memory	and	are	harder	
to	do	text	queries	on,	but	store	trees	and	graph	data	more	efficiently	than	a	column-based	
database.		

Furthermore,	a	graph-based	database	allows	storing	arbitrary	data.	A	column-base	database	
requires	data	to	be	in	a	very	rigid	format	–	data	must	fit	into	the	specified	columns.	A	lot	of	our	
data	is	wildly	different,	with	types	such	as	vulnerabilities,	software	packages	and	malware.	This	
variance	makes	storing	data	in	columns	difficult	and	unscalable.	

Web	technologies	&	NLP	stretch	goal	

Our	project	will	make	use	of	TypeScript	and	the	React	library.	We	came	to	this	decision	over	other	
web	development	frameworks	because	of	a	large	ecosystem	of	packages,	previous	experience	of	

	 	 	

	

	

team	members,	and	the	easy-of-use	of	performing	API	calls	and	displaying	the	data	in	an	aesthetic	
way.	Other	considerations	were	made	such	as	Angular,	Vue,	or	simply	HTML/CSS/JS.	Ultimately	
because	of	the	previously	described	reasons,	React	won	as	the	library	of	choice.	

4.5	DESIGN	ANALYSIS		

Scraper:		

• Implemented	basic	scraping	and	parsing	functionality,	scraper	reads	input	of	sources	in	a	
JSON	document	and	outputs	the	parsed	HTML	document	for	each	source.	

• Integrated	the	BeautifulSoup4	parses	in	with	the	Scrapy	spider.	Now	instead	of	raw	HTML	
data,	it	is	being	cleaned	up	to	a	more	readable	format	which	will	make	storing	in	a	
database	or	running	language	processing	on	the	data	much	easier.		

Docker	Container	and	GitHub:	

• Constructed	new	folder	setup	in	GitHub	that	allows	each	folder	to	be	a	Docker	container.	
• Used	Docker	Compose	to	organize	and	build	each	container.	
• The	scraper	and	MongoDB	database	that	was	constructed	to	store	article	information	will	

each	be	a	separate	container.		

Article	Tagging:	

• Began	using	the	NER	Annotator	tool	available	online	to	create	a	model	which	can	be	used	
by	the	spacy	tool	to	process	the	article	information.	

So	far	during	the	implementation	of	the	items	above,	the	proposed	design	has	functioned	well	in	
organizing	and	linking	the	different	components	together.	The	scraper	and	the	parser	are	currently	
being	worked	on	however	the	other	sections	of	the	proposed	design	have	not	been	started	yet	so	an	
analysis	of	how	they	are	working	is	not	possible.	For	future	design,	the	article	tagging	will	continue	
after	more	information	is	scraped	and	stored	in	the	database.	Then	the	created	model	from	NER	
tagging	will	be	used	to	parse	the	article	data	and	identify	information	to	build	the	knowledge	graph	

5		Testing		
Our	project	will	make	use	of	many	types	of	testing	to	test	the	various	software	components	and	
subcomponents.	For	each	of	our	components,	our	goal	is	to	have	at	least	75%	code	coverage	and	
100%	of	tests	pass.	Each	component	is	responsible	for	containing	unit,	integration,	and	system	tests	
that	verify	its	behavior	internally,	while	additional	integration	and	system	tests	will	be	outside	of	
these	components	to	test	their	interaction.		

When	changes	are	made	in	one	component,	it	will	be	required	to	run	all	tests	in	that	component	in	
addition	to	all	integration	and	system	tests.	New	tests	should	be	added	to	verify	the	behavior	of	
newly	added	logic.	Our	main	instruments	for	testing	will	be	the	Python	testing	framework	unittest	
for	our	components	written	in	Python	and	the	testing	framework	jest	for	our	website	component	
written	in	TypeScript.	This	will	work	to	run	unit	tests	on	individual	components	and	integration	
and	system	tests	across	components.	

The	team’s	overall	testing	philosophy	is	to	test	early,	test	often,	and	use	it	as	a	tool.	Testing	can	be	a	
wonderful	tool	in	a	Test-Driven	Development	(TDD)	framework	because	expected	inputs	and	

	 	 	

	

	

outputs	can	be	specified	first,	then	the	tests’	results	indicate	to	the	developer	whether	they’ve	
implemented	the	desired	functionality.	

5.1	UNIT	TESTING	

Scraper	

The	scraper	tests	and	code	coverage	should	be	run	after	every	commit	to	ensure	no	breaking	
changes	have	been	made.	The	testing	plan	is	as	follows:	

1. Open	terminal	
2. Change	directory	to	`scraper`	
3. Run	`make	coverage`	command	
4. Verify	no	failures	in	tests	

a. If	all	tests	pass,	the	text	“OK”	will	show	at	the	bottom	of	the	output.	
b. If	one	or	more	tests	fail,	the	bottom	of	the	output	will	read	“FAILED”	with	the	

number	of	failures	in	parenthesis	(e.g.,	“FAILED	(failures=1)”)	
5. Open	generated	coverage	file	`htmlcov/index.html`	
6. Ensure	test	coverage	is	greater	than	or	equal	to	75%.	

	

Parser	

The	parser	tests	and	code	coverage	should	be	run	after	every	commit	to	ensure	no	breaking	
changes	have	been	made.	The	testing	plan	is	as	follows:	

1. Open	terminal	
2. Change	directory	to	`parser`	
3. Run	`make	coverage`	command	
4. Verify	no	failures	in	tests	

a. If	all	tests	pass,	the	text	“OK”	will	show	at	the	bottom	of	the	output.	
b. If	one	or	more	tests	fail,	the	bottom	of	the	output	will	read	“FAILED”	with	the	

number	of	failures	in	parenthesis	(e.g.,	“FAILED	(failures=1)”)	
5. Open	generated	coverage	file	`htmlcov/index.html`	
6. Ensure	test	coverage	is	greater	than	or	equal	to	75%.	

	

Frontend	

The	tests	and	code	coverage	for	the	website	component	should	be	run	after	every	commit	to	ensure	
no	breaking	changes	have	been	made.	The	testing	plan	is	as	follows:	

1. Open terminal
2. Change directory to `frontend`
3. Run `yarn test` command
4. Verify no test failures

	

Pipeline	Tests	

During	the	“Build	and	Test	Scraper”	step	in	the	pipeline,	before	the	final	zip	is	made	and	uploaded	
to	the	lambda	first	the	step	runs	the	“make	test”	and	“make	clean”	commands	to	verify	the	scraper	
lambda	code	is	working	before	it	gets	deployed.	This	requires	no	user	intervention	besides	creating	
the	tests	exactly	the	same	as	you	would	for	local	ones	and	pushing	them	to	GitHub	for	the	pipeline	

	 	 	

	

	

to	process.	The	same	process	occurs	for	the	frontend,	where	unit	and	UI	tests	are	run	by	the	
pipeline.	The	pipeline	will	fail	if	any	tests	fail.	

5.2	INTERFACE	TESTING	

Our	interfaces	include	the	source	list	for	the	scraper,	the	entity-relationship	output	from	the	
parser,	and	the	graph	API	queried	by	the	frontend	to	be	rendered.	To	test	these	interfaces,	we	have	
tests	in	place	that	send	data	through	the	interface	and	verify	its	integrity.	In	addition,	the	parser	
entity-relationship	output	can	be	tested	by	inputting	mock	article	data	and	ensuring	the	parser	
output	is	as	expected.	For	most	of	our	existing	and	future	tests	we	use	the	Python	testing	library	
such	as	unit	test	or	mocking	tools	in	a	test	class	that	asserts	the	scraper	and	parser	are	functioning	
properly.	The	graph	API	is	provided	by	Neo4j	and	thus	isn’t	tested	in	our	project,	although	any	
bindings	that	we	write	for	this	API	will	be.	

	

5.3 INTEGRATION	TESTING	

The	critical	integration	paths	in	our	project	begin	with	the	human-developed	source	list	being	
handled	correctly	by	the	scraper.	The	next	is	the	scraper	properly	storing	article	information	in	the	
MongoDB	database.	Then	after	this	is	completed,	the	parser	retrieves	the	MongoDB	data	and	
constructs	the	list	of	entities	and	relationships.	Lastly	this	entity-relationship	data	is	stored	in	the	
Neo4J	graph	database	and	then	queried	by	the	frontend	for	rendering.	All	the	above	paths	are	
essential	to	the	project	operating	correctly	and	can	be	tested	by	using	Docker	Compose	to	build	
and	run	all	the	containers	on	a	local	or	cloud	server,	then	use	a	script	or	library	to	verify	the	
container	are	communicating	properly	with	data	expected	by	that	test	case.	

	

5.4 SYSTEM	TESTING	

By	using	source	lists	with	inputs	for	which	the	expected	outputs	are	known	we	can	test	that	the	
output	of	our	system	falls	within	our	defined	parameters.	Our	first	step	to	test	output	we	will	use	
portions	of	documents	we	annotated	manually	to	ensure	the	machine	learning	program	is	
outputting	what	we	expect	it	to	and	compare	it	to	the	accuracy	requirements	of	the	annotation.	As	
the	machine	learning	portion	gets	fed	more	documents	and	learns	how	to	annotate	with	more	
accuracy,	we	will	begin	to	give	it	larger	portions	of	a	document	until	it	can	annotate	a	full	
document	within	the	accuracy	percentage	requirement	we	defined.	Once	this	point	has	been	
reached,	we	will	begin	to	give	it	full	documents	until	the	machine	learning	has	been	refined	enough	
to	where	it	is	no	longer	required	for	us	to	test	each	output	for	accuracy.	Our	system	testing	will	use	
all	the	tools	mentioned	in	the	unit,	interface,	and	integration	test	sections	to	test	the	whole	system,	
as	each	section	needs	to	perform	to	our	standards	for	the	whole	program	to	perform	well.	If	one	
piece	is	not	working	up	to	standards,	the	output	may	contain	unexpected	behavior.	

	

5.5 REGRESSION	TESTING	

Our	strategy	to	implement	Regression	Testing	is	supported	by	two	rules:	Have	a	separate,	clean,	
working	copy	of	the	code	on	our	main	branch	and	run	unit,	integration,	and	system	tests	on	every	
pull	request	to	this	branch.	The	pull	request	is	not	able	to	be	merged	until	all	tests	are	passing.	This	

	 	 	

	

	

will	ensure	existing	functionality	has	not	been	broken,	plus	having	the	main	branch	be	a	clean	
working	copy	allows	us	to	rollback	changes	that	break	existing	functionality.	Critical	features	that	
our	project	needs	to	ensure	do	not	break	are	the	scraper	fetching	sources	and	the	parser	processing	
these	sources	and	outputting	expected	entities	and	relationships.	

	

5.6 ACCEPTANCE	TESTING	
Acceptance	testing	of	our	functional	requirements	will	be	performed	by	running	unit,	integration,	
and	system	tests	to	provide	verifiable	evidence	that	our	test	cases	are	passing.	Most	of	our	project’s	
non-functional	requirements	can	be	summed	up	as	a	satisfactory	level	of	code	quality,	libraries	
being	open-source	and	a	license	allowing	free	usage,	and	documentation	of	code.	These	non-
functional	requirements	can	be	verified	by	reviewers	of	pull	requests.	For	example,	if	a	new	library	
is	added	as	a	dependency,	the	reviewer	should	be	double	checking	the	license	allows	us	to	use	it.	
Our	client	will	be	involved	in	acceptance	testing	by	being	made	available	the	number	of	passed	
tests	and	code	coverage,	ensuring	we’ve	met	the	expectations	set	in	the	requirements	and	
metrics/evaluation	criteria.	They	will	also	be	delivered	our	iterative	beta	builds	after	each	sprint	to	
evaluate	our	progress	and	correctness	in	our	design	implementation.	

	

5.7 SECURITY	TESTING	

Security	Testing	will	consist	of	testing	that	malicious	queries	from	the	frontend	website	are	not	
able	to	perform	any	sort	of	remote	code	execution	(RCE)	on	the	backend	database.	To	ensure	this	
doesn’t	happen,	all	inputs	from	the	user	need	to	be	sanitized.	Testing	plans	for	security	testing	
include	performing	various	types	of	penetration	testing	on	the	frontend,	including	NOSQL	
injection	and	cross-site	scripting,	by	performing	queries	with	malformed	input	to	execute	malicious	
code	on	the	server	or	in	the	user’s	browser.	

	

5.8 RESULTS	

The	testing	on	the	scraper	had	two	testing	requirements	associated	with	it.	All	tests	(100%)	had	to	
pass,	and	the	test	coverage	of	scraper	Python	source	code	had	to	be	at	least	75%.	Our	unit	testing	
successfully	achieved	those	goals;	all	unit	tests	passed,	and	the	coverage	is	76%.	This	was	able	to	
show	that	the	scraper	is	working	exactly	as	intended	taking	input	from	the	source	list	and	
outputting	the	article	data.	The	following	figure	shows	an	output	of	test	coverage	in	our	current	
implementation	of	the	scraper.	Note	the	total	coverage	is	shown	at	the	top.	

Scraper	

	 	 	

	

	

	

	

	

Parser	

	 	 	

	

	

	

	

Frontend	

	

	

	 	 	

	

	

	

	

6		Implementation	

	
Infrastructure	Architecture	

	

Articles	are	obtained	from	our	chosen	sources	and	manually	annotated	for	Named	Entities	and	
relations	between	them	by	members	of	the	team	in	a	software	called	BRAT.	BRAT	runs	in	a	Docker	
container	and	exposes	a	web	interface	to	perform	the	annotations,	saving	them	to	the	disk.	These	
annotations	are	then	checked	into	our	repo	and	converted	into	a	.jsonl	format	which	can	be	used	as	
input	to	our	trainer.	

The	trainer	component	is	written	in	Python	and	is	in	the	form	of	a	spaCy	project.	The	first	step	
performed	by	the	trainer	is	reading	in	the	.jsonl	annotations	and	converting	them	to	a	spaCy-
format	.spacy	binary	file.	This	is	done	by	parsing	the	input	file	for	the	list	of	annotated	entities	and	
relations,	adding	them	to	a	spaCy	Doc	object,	and	adding	that	object	to	a	spaCy	DocBin	that	can	be	
finally	be	written	as	a	.spacy	binary	file.	The	trainer	selects	a	random	20%	of	documents	to	be	used	
as	“test”	articles.	These	are	not	used	to	train	the	model,	but	rather	run	the	model	on	after	training	
to	compare	the	model’s	output	to	our	annotator's	gold-standard	annotations.	The	trainer	first	
trains	the	NER	model,	then	the	RE	model.	These	are	output	along	with	scores	of	the	model,	all	of	
which	is	then	uploaded	to	S3	to	be	used	by	the	parser.	

	 	 	

	

	

The	scraper	is	a	component	written	in	Python.	It	makes	use	of	the	scrapy	library	to	scrape	from	a	
“sourcelist”	stored	in	a	JSON	format.	For	each	source,	scrapy	first	scrapes	the	homepage,	then	each	
article	linked	on	the	home	page.	Before	scraping	the	article,	the	scraper	queries	the	article	database	
(DynamoDB)	to	check	if	this	article	has	already	been	scraped.	This	is	done	by	checking	if	the	URL	
of	the	article	exists	in	the	database.	If	it	exists,	the	scraper	skips	the	article.	If	not,	it	is	scraped	and	
then	the	record	is	output	into	the	article	database.	A	record	in	this	database	has	the	following	
structure:	

- url:	string	
- parsed:	boolean	
- parsed_version:	string	
- scrape_time:	string	
- scrape_version:	string	
- text:	string	
- title:	string	

The	parsed	field	defaults	false	and	parsed_version	defaults	to	an	empty	string.	These	fields	are	set	
later	by	the	parser.	The	scraper	runs	on	AWS	Lambda	and	has	a	schedule	to	execute	every	6	hours.		

The	parser	component	is	written	in	Python.	It	starts	by	spawning	three	types	of	threads:	input,	
parser,	and	output.	The	input	thread	scans	the	article	database	in	chunks	and	adds	articles	that	
haven’t	been	parsed	to	an	input	queue.	There	are	one	or	more	parser	threads	monitoring	the	queue	
and	once	they	get	an	article,	parsing	the	text	for	entities	and	relations.	This	is	done	by	using	spaCy	
to	load	the	NER	and	RE	models	we	train.	After	parsing	the	article,	the	article	and	tuple	of	entities	
and	relations	are	placed	into	the	output	queue.	There	are	one	or	more	output	threads	monitoring	
this	queue	and	once	they	obtain	a	record,	they	perform	an	output	task	with	it.	We	have	one	output	
class	that	writes	the	entities	and	relations	to	our	knowledge	graph	and	another	class	that	marks	the	
article	as	parsed	in	the	article	database.		

The	knowledge	graph	component	is	a	Neo4J	graph	database	running	on	an	AWS	EC2.	It	exposes	an	
API	for	both	inserting	and	querying	the	graph.	It	also	contains	the	constraints	that	nodes	of	a	
certain	type	must	have	unique	names.	For	example,	this	means	there	is	only	one	ORGANIZATION	
node	in	the	graph	with	the	name	‘Microsoft’.	There	is	also	an	AWS	API	Gateway	that	serves	as	an	
HTTPS	API	gateway	for	the	Neo4J	EC2.	Requests	made	to	this	API	gateway	are	forwarded	to	Neo4J.	

The	frontend	is	written	in	React	and	hosted	as	a	static	site	on	AWS	S3	with	an	AWS	CloudFront	
edge.	CloudFront	handles	edge	computing	and	providing	a	domain	name,	which	then	serves	static	
content	from	S3.	The	frontend	queries	the	knowledge	graph	using	the	API	gateway,	getting	back	a	
list	of	nodes	and	edges	to	display	on	a	graph.	The	query	is	built	using	a	GUI	graph	editor	built	on	
Uber’s	react-digraph	library,	which	is	then	converted	into	a	Cypher	query	using	a	BFS	algorithm.	
The	returned	nodes	and	edges	are	displayed	using	the	vis.js	library.	

Our	code	is	stored	in	a	GitHub	repo	with	GitHub	Actions	as	our	CI/CD	pipeline.	Every	time	a	pull	
request	or	push	is	made,	the	pipeline	checks	to	see	if	a	change	was	made	to	any	of	our	individual	
components.	If	so,	it	builds,	run	tests,	and	then	(if	pushing	to	the	main	branch)	deploys	the	new	
code.	The	new	code	is	pushed	to	AWS	using	Terraform,	which	allows	us	to	write	Infrastructure-as-
Code	and	associate	our	built	artifacts	with	certain	AWS	services.	

6.1	EVOLUTION	OF	DESIGN	

This	project’s	design	has	evolved	quite	a	lot	since	491.	In	the	beginning	each	module	was	divided	up	
into	docker	containers	that	were	ran	locally,	and	the	code	and	docker	files	were	pushed	to	GitHub	
so	each	member	of	the	team	could	use	them	on	different	computers.	This	design	functioned	well	
initially	but	as	the	complexity	of	the	modules	grew	and	the	design	struggled	with	some	
requirements	the	team	looked	for	architectural	and	deployment	changes	that	could	resolve	these	

	 	 	

	

	

issues.	One	major	change	was	the	move	from	running	everything	locally	to	running	and	storing	
most	modules	in	AWS.	The	other	large	change	was	the	implementation	of	the	GitHub	Actions	
pipeline	that	automatically	builds	code,	deploys	infrastructure	that	is	configured	through	
terraform,	and	comments	on	Pull	Requests	to	help	everyone	on	the	team	see	the	build	status	and	
infrastructure	plan	before	merging	anything.	This	added	multiple	major	benefits	including:	

• Code/Infrastructure	Safety:	The	terraform	configuration	always	requires	running	a	plan	
before	applying	anything	when	running	in	the	pipeline.	This	ensures	that	if	the	plan	fails	
with	any	issues	or	the	outputted	configuration	is	incorrect	the	pr	author	can	cancel	it	and	
fix	the	issues.	

• Quick	And	Easy	Deployment:	Using	terraform	as	IAC	allows	anyone	on	the	team	to	quickly	
configure	and	add	AWS	resources	just	by	pushing	to	GitHub	and	letting	the	pipeline	
deploy	everything.	

• Automatic	Building:	The	move	to	cloud	for	many	of	the	project	modules	led	to	the	team	
using	AWS	lambda	as	a	serverless	solution.	In	terraform	all	lambda	functions	must	point	to	
a	source	code	zip	file,	so	the	pipeline	would	bundle	the	code	and	dependencies	together	
whenever	the	monitored	files	change	on	a	push.	

The	diagram	for	the	logic	and	architecture	of	the	GitHub	Actions	pipeline	is	shown	below:	

	 	 	

	

	

One	important	feature	of	the	pipeline	came	around	due	to	a	core	problem	the	team	ran	into	when	
initially	switching	to	GitHub	Actions.	With	the	free	version	we	were	using,	there	was	a	limit	of	2000	
build	minutes	per	month.	This	sounded	like	plenty	at	first	but	when	attempting	to	build	the	parser	
the	amount	of	time	to	download	and	compress	the	dependencies	was	making	the	pipeline	take	8-12	
minutes	per	build	which	severely	limits	how	many	builds	we	can	run	especially	when	team	
members	were	having	to	wait	that	amount	of	time	for	Pull	Requests	that	were	not	infrastructure	
related	at	all.	This	is	where	the	path	action	(also	referred	to	as	GitHub	Diff	action)	comes	in.	It	
allows	us	to	specify	variables	that	are	linked	to	file	or	directory	paths	that	are	true/false	based	on	if	
the	commit	the	pipeline	is	running	on	has	changes	in	those	files.	In	addition,	the	pipeline	can	
contain	conditional	statements	that	recognize	whether	it	is	in	a	Pull	Request	or	Push	event	and	
which	branch	it	is	running	on.	This	was	any	PR	or	push	to	the	“develop”	branch	for	experimenting	
will	not	affect	the	infrastructure	in	AWS,	until	that	terraform	code	is	Pushed	to	the	“main”	branch	
at	which	point	the	Terraform	Apply	(Production)	step	is	run	and/or	the	build	parser	container	is	
pushed	to	ECR.	

	 	 	

	

	

8	Closing	Material	

8.1	CONCLUSION	

The	project	has	made	significant	progress	and	achieved	many	of	its	original	objectives.	The	team	
successfully	generated	a	Cybersecurity	Knowledge	Graph,	leveraging	machine	learning	techniques	
to	create	and	train	a	model	off	of	annotated	cybersecurity	news	articles.	The	team	was	able	to	
aggregate	information	from	various	sources	and	meet	additional	stretch	goals	that	were	deemed	
important	for	operation.	The	implementation	of	querying	the	Knowledge	Graph	from	the	frontend	
and	deploying	it	to	the	AWS	cloud	infrastructure	has	enhanced	accessibility	and	scalability.	
Furthermore,	by	setting	up	an	automated	process	that	runs	every	6	hours,	the	system	ensures	the	
continuous	update	of	data.	The	use	of	modular	interfaces	in	components	has	contributed	to	the	
system's	flexibility	and	maintainability.	Looking	ahead,	future	enhancements	could	include	
expanding	the	article	dataset	for	training	to	improve	the	accuracy	of	Named	Entity	Recognition	
(NER)	and	Relation	Extraction	(RE),	incorporating	Natural	Language	Processing	(NLP)	for	frontend	
queries,	and	implementing	parser	constraints	to	ensure	valid	relations.	The	project	could	also	
benefit	from	an	overall	improvement	of	code	structure	and	improvement	of	the	pipeline	to	help	
streamline	deployment	in	the	cloud	infrastructure.	

8.2	REFERENCES	

P.	Evangelatos,	C.	Iliou,	T.	Mavropoulos,	K.	Apostolou,	T.	Tsikrika,	S.	Vrochidis,	and	I.	
Kompatsiaris,	“Named	entity	recognition	in	cyber	threat	intelligence	using	transformer-
based	models,”	2021	IEEE	International	Conference	on	Cyber	Security	and	Resilience	(CSR),	
2021.		

P.	Ranade,	A.	Piplai,	A.	Joshi,	and	T.	Finin,	“Cybert:	Contextualized	embeddings	for	the	
cybersecurity	domain,”	2021	IEEE	International	Conference	on	Big	Data	(Big	Data),	2021.	

N.	Rastogi,	S.	Dutta,	A.	Gittens,	and	M.	Zaki,	“TINKER:	A	framework	for	Open	source	Cyberthreat	
Intelligence,”	21st	International	Conference	on	Trust,	Security	and	Privacy	in	Computing	and	
Communications,	Oct.	2022.	

	

8.3	APPENDICES	

8.3.1	Operation	Manual	

The	first	step	to	working	with	the	project	is	cloning	the	repo.	You’ll	need	to	obtain	the	repo	URL	
and	credentials	from	an	authorized	user,	after	which	you	may	clone	using	the	git	clone	<URL>	
command.	

8.3.1.1	Brat	

Annotation	of	articles	is	done	using	the	tool	BRAT.	BRAT	runs	in	a	Docker	container	and	exposes	a	
web	interface.	To	start	the	Docker	container:	

1. Open	a	terminal	
2. Change	directory	into	sdmay23-01/brat	

	 	 	

	

	

3. Run	make	build	
4. Run	make	start	
5. Open	http://localhost:8001	in	a	web	browser	
6. Begin	annotating	

After	performing	annotations,	the	annotations.jsonl	file	also	needs	to	be	regenerated.	Note	that	this	
can	only	be	done	on	a	Unix	machine,	i.e.,	this	is	not	applicable	for	Windows.	

On	a	Unix	machine,	perform	the	following	steps:	

1. Open	a	terminal	
2. Change	directory	into	sdmay23-01/trainer	
3. Run	the	command:	./import_brat_to_assets.sh	

The	annotations	have	now	been	converted	to	a	format	spaCy	can	interpret.	Add	the	brat/data	
directory	and	the	trainer/assets/annotations.jsonl	to	your	git	stage	and	follow	the	steps	in	the	
section	“How	to	Contribution	to	the	Repository”	to	contribute	these	changes.	

8.3.1.2	Trainer	

The	trainer	is	located	in	the	trainer	directory.	To	perform	training,	you	need	to	be	on	a	Windows	10	
machine	and	have	Anaconda	installed.	Anaconda	is	used	as	a	dependency	manager	for	the	training	
project.	After	this,	install	the	Anaconda	environment	with	the	command:	

conda	env	create	-f	environment.yml	

After	this,	activate	this	environment	with	the	command:	

conda	activate	sdmay23-01_trainer	

This	command	prompt	will	now	have	all	the	dependencies	to	train	the	models.	To	train	the	models	
with	a	GPU	and	transformers,	run	the	following	command:	

make	all_gpu	

This	will	take	approximately	one	hour,	after	which	there	will	be	two	models	in	the	training	
directory,	along	with	some	score	.txt	files	and	a	hash	of	the	annotations	file.	Now	you	have	to	push	
these	files	to	AWS	S3	so	they	can	be	used	by	the	parser	when	performing	information	extraction	on	
article	text.	To	upload	these	newly-trained	models,	scores,	and	hash,	run	the	following	command:	

python	scripts\upload_models.py	

The	latest	model	has	now	been	pushed	to	AWS	S3.	

8.3.1.3	Scraper	

The	scraper	is	stored	in	the	lambda_scraper	folder	and	the	entrypoint	to	the	application	is	the	
src/bootstrap.py	file.	After	making	changes	to	the	scraper,	write	a	test	in	the	tests	folder	to	confirm	
your	feature	is	working	and	then	run	the	command	make	test	to	run	unit	and	E2E	tests.	This	will	
also	ensure	your	changes	don’t	break	existing	functionality.	After	your	PR	is	merged	to	the	main	

	 	 	

	

	

branch	(please	see	section:	“How	to	Contribute	to	the	Repository”	for	more	information),	you	can	
invoke	the	scraper	Lambda	in	the	AWS	Console	by	the	following	steps:	

1. Log	into	the	senior	design	AWS	account	
2. Navigate	to	the	Lambda	->	Functions	page	
3. Click	“senior_project_scraper_lambda”	
4. View	code	in	the	“Code”	tab	
5. Navigate	to	the	“Test”	tab	
6. Click	the	“Test”	button	at	the	top	right	

The	scraper	will	now	be	invoked	and	the	logs	will	display	after	execution	is	complete.	

8.3.1.4	Parser	

Before	the	parser	can	be	run,	you	will	need	to	obtain	access	to	sensitive	credentials.	These	include:	

1. AWS_ACCESS_KEY	
2. AWS_SECRET_ACCESS_KEY	
3. NEO4J_URL	
4. NEO4J_USER	
5. NEO4J_PASSWORD	

These	secrets	are	needed	to	interact	with	the	AWS	DynamoDB	article	storage	and	the	Neo4J	
knowledge	graph.	After	obtaining	these	values,	you	will	need	to	create	a	file	in	the	parser	directory	
called	.env.	This	file	should	follow	the	format:	

AWS_ACCESS_KEY=<value>

AWS_SECRET_ACCESS_KEY=<value>

NEO4J_URL=<value>

NEO4J_USER=<value>

NEO4J_PASSWORD=<value>

After	these	values	are	obtained	and	the	environment	file	is	filled,	the	parser	can	be	run	locally	by	
using	the	docker-compose.yml	file	in	the	root	of	the	sdmay23-01	directory.	Simply	navigate	to	this	
directory	in	your	terminal	and	run	docker	compose	up	parser.	This	will	first	build	the	Docker	image	
for	the	parser,	and	then	listen	and	wait	for	an	invocation.	This	is	because	it	is	emulating	how	it	
would	be	waiting	for	an	event	in	AWS	Lambda.	To	invoke	the	parser,	run	the	following	command:	

curl -XPOST "http://localhost:9000/2015-03-
31/functions/function/invocations" -d '{}'

	

8.3.1.5	Knowledge	Graph	

The	knowledge	graph	is	hosted	on	AWS	in	an	EC2	instance.	To	work	directly	with	the	knowledge	
graph,	you	will	need	to	log	into	the	senior	design	AWS	account.	

	 	 	

	

	

1. Log	into	the	senior	design	AWS	account	
2. Navigate	to	the	EC2	->	Instances	page	

From	here	you	can	obtain	the	public	domain	name	of	the	EC2	and	use	this	to	SSH	into	the	
machine.	You	will	also	need	to	obtain	the	confidential	.pem	key	to	SSH	into	the	machine.	

8.3.1.6	Frontend	

The	frontend	is	a	React	app	that	is	built	to	a	static	site.	To	work	on	the	frontend,	first	change	
directory	into	the	frontend	folder,	then	install	dependencies	using	the	yarn	command.	After	
installing	the	dependencies,	a	development	server	can	be	run	using	yarn	start.	To	run	tests,	use	the	
yarn	test	command.	Finally,	to	build	the	React	app	into	a	static	website,	run	yarn	build.	This	
generates	the	site	in	the	build	directory.	

To	use	the	frontend,	open	a	web	browser	and	go	to	https://d1mthcxyqt7zjw.cloudfront.net/	to	use	
our	production	frontend,	to	http://localhost:3000	if	you	are	using	the	development	server,	or	to	the	
site	where	you	are	hosting	your	own	build	to	use	that.	You	can	either	manually	enter	a	query	in	the	
search	bar	at	the	top	or	use	the	visual	query	builder	to	construct	a	pattern	graph	for	it	to	match.	To	
use	the	visual	query	builder,	click	the	“Visual	Query	Builder”	button	on	the	left	sidebar.	You	can	
add	nodes	to	your	query	by	selecting	the	type	from	the	dropdown	menu	on	the	left,	optionally	
adding	a	name	to	match	(e.g.,	ORGANIZATION,	Microsoft),	and	clicking	the	“Add”	button.	To	add	
a	relation	between	two	nodes	in	your	query,	hold	the	shift	key	and	click	and	drag	from	one	to	the	
other,	and	select	the	type	of	relation	if	prompted.	Once	you	are	done,	click	OK.	Once	you	have	
entered	your	query	either	manually	or	using	the	visual	query	builder,	the	resulting	graph	will	be	
displayed	in	the	main	area	of	the	page.	

8.3.1.7	Contribution	

How	to	Contribute	to	the	Repository:	

When	making	changes	to	code	or	infrastructure	as	code	in	the	repository	it	is	important	to	first	
make	a	new	branch	from	develop	in	order	to	keep	the	repository	organized.	Make	the	changes	to	
main.tf	in	the	root	folder	for	infrastructure	or	in	the	appropriate	folder	for	the	module	you	are	
contributing	to.	Once	the	changes	are	complete,	make	a	Pull	Request	from	your	branch	back	to	
develop	and	wait	for	the	pipeline	to	run.	It	will	output	a	comment	in	the	PR	with	the	status	of	the	
terraform	plan	and	be	green	if	all	the	pipeline	steps	are	successful	and	it	is	ready	to	be	merged.	
Once	the	code/infrastructure	is	in	develop	and	fully	tested,	a	PR	can	be	created	from	develop	to	
main	that	contain	the	changes	to	be	applied	to	the	infrastructure	in	AWS.	The	pipeline	will	then	
deploy	all	changed	resources	and	the	process	is	complete.		

8.3.2	Alternative	Versions	of	the	Design	

In	the	early	designs	of	our	project	a	stretch	goal	of	ours	was	to	implement	natural	language	queries	
by	using	natural	language	processing	on	the	front-end.	We	ended	up	not	implementing	this	
portion	of	the	project	because	we	did	not	have	the	time	to	work	on	this	feature	as	we	wanted	to	
focus	our	efforts	on	the	main	part	of	the	project,	that	being	to	generate	accurate	knowledge	graphs	
from	our	articles.	

We	also	had	a	previous	version	of	how	the	knowledge	graph	would	look,	it	even	had	different	
nodes	and	relations	and	connected	in	different	ways.	Upon	further	digging,	we	realized	that	many	

	 	 	

	

	

aspects	of	the	original	design	were	not	going	to	work,	as	it	would	eventually	structure	itself	
incorrectly,	so	we	had	to	redesign	the	graph	to	be	simpler	yet	more	robust.	The	current	version	is	
basically	that	version,	with	some	additional	relations	to	better	help	the	machine	learning	model	
understand	how	things	could	be	related.	

At	one	time	we	had	also	planned	to	deploy	the	parser	in	a	lambda,	and	had	spent	a	large	chunk	of	
time	preparing	to	get	it	to	deploy.	As	we	started	to	finalize	things,	because	of	the	limited	zip	upload	
size	of	the	free	version	of	AWS,	we	found	out	that	the	parser	dependencies	were	much	larger	than	
the	250	MB	limit	and	sat	at	a	hefty	4	GB,	which	was	much	more	than	it	was	willing	to	handle.	We	
had	to	scrap	the	idea	and	had	to	make	our	own	custom	lambda	container	to	provide	the	
dependencies	instead	(which	had	a	10	GB	limit),	so	the	project	still	proceeded	but	with	a	minor	
setback	in	how	it	was	implemented.	The	pipeline	also	had	to	be	modified	to	build	and	deploy	this	
container	in	a	reasonable	amount	of	time	if	the	code	or	dependencies	change.		

8.3.3	Other	Considerations	

Because	of	the	nature	of	training	a	machine	learning	model,	we	encountered	a	few	odd	things	that	
happened	as	the	MLM	started	to	parse	and	fill	the	Neo4J	database	with	nodes	and	relations.	The	
team’s	personal	favorite	was	“oops	all	versions”,	where	for	some	reason,	the	parser	decided	almost	
every	word	it	scanned	in	from	an	article	was	a	version,	and	once	that	information	was	sent	to	the	
graph,	it	was	populated	with	a	few	dozen	nodes	with	random	words	that	had	been	flagged	as	a	
version.	This	was	fixed	in	the	next	parser	update,	but	it	made	us	wonder	where	it	learned	or	even	
what	made	the	parser	do	that.	We	also	found	a	whole	paragraph	from	an	article	that	was	describing	
in	detail	how	a	distributed	denial-of-service	(DDoS)	attack	that	was	somehow	flagged	to	be	
vulnerability,	even	though	all	of	the	articles	we	trained	it	on	didn’t	have	more	than	three	or	four	
words	that	were	an	entity.	These	errors	are	the	reason	we	mentioned	a	hefty	increase	of	the	items	
the	model	can	be	trained	on,	as	seeing	a	few	hundred	more	examples	would	allow	it	to	learn	better	
and	then	perform	its	own	NER	and	RE	more	accurately.	

	

	

