Knowledge Graphs for
Cybersecurity Reasoning

sdmay23-01

Alice Cheatum Nicklas Cahill Michael Watkins

Brandon Richards Carter Kitelinger Micah Gwin

Introduction

* Project Overview

* Perform information extraction on sources to determine cybersecurity
named entities and relations between them

* Build a knowledge graph from entities and relations
e Continuously update knowledge graph with new information from sources
* Query and visualize knowledge graph from frontend

* Objectives
* Efficient querying of cybersecurity entities and their relations

e Assist cybersecurity researchers and incident responders in
contextualizing latest threats

* Streamline decision-making for cybersecurity risk management

Knowledge Graph

Museum
* Represents a network of real-world
entities and the relationship(s) between <a
—
them.
is a The Louvre
* 3 main components: Eiffel Tower -
~~.is located in is located in
o Nodes
o Edges
o Labels is exhibited at
Leonardo da
* Used by search engines to complete > \Vind
i i was created b
§earch queries to give expanded e y
information. Mona Lisa
Is interested in/’
s in
* Example Query: Bob searches "Mona \isabout
Lisa". Bob
Lisa

Gherardini

Cybersecurity
Knowledge Graph
(CSKG)

. Knowledge Graph with domain-specificnodes and edges

. Nodes (Entities)
. Organization
. System
* ThreatGroup
* Vulnerability
. Malware Type
+ etc..

. Edges (Relationships)
. attacked
. exploits
. used
. attackVector
* manages
. isType
* deployed
* executes

*+ etc..
. Use ontologies to perform queries efficiently

. Example Query: Attacks on PSN

Anonymous

Sony (Threat Group)

(Organization)
attacked

Microsoft
(Organization)

\

manages attacked

used

PlayStation

(15;:;'3;) systemVersion Network attackVector Worm
(System) (Malware Type)
attack vector isType
T~{vE-2007-1653—
GlowWorm
attacked (Vulnerability) ~_
executes DoS

Denial of
Service
(Attack Type)

(Attack Type)

Lizard Squad
(Threat Group)

CVE-2021-
used—— 40981

(Vulnerability)

~— .
exploits

SMB
Version 1

f (Protocol)
attacked used .
isType
Razer Lazarus Group \

«€«—attacked

(Organization) (Threat Group)

Trojan Horse
(Malware Type)

attackVector

/

CVE-2022-3713——
(Vulnerability)

SMB
Version 2

exploits (Protocol)

Implementation

Architecture

Trainer

Python spaCy project, ran
when annotations change

Scraper

AWS Lambda, trigger every 6 hours

Article storage
DynamoDB database

Parser

AWS Lambda with ECR Image, trigger

every 6 hours

Knowledge Graph

Neo4) runningon EC2, AWS API

Gateway proxy

Frontend

StaticReact webapp hosted with AWS

S3 and AWS Clou

Front

Model
Latest Model— Storage
f (S3)
Scraper ; Parser T
—— Articles—>» Ag'c'e StoE)aBge — Articles—> NER + RE Model
(Lambda) (DynamoDB) (Lambda + ECR Image) odels
Cron Job (6hr) Cron Job (6hr)
Entities and Trainer
relations (Local spaCy project)
Knowledge Graph
Database
(Neo4J) Annotations
T Manual Annotation
(BRAT)

Frontend API Gateway
Static React in S3 QUe—> AWS API Gateway)

T

AWS CloudFront
Edge

Client Browser

0

Push to List of
Covered Branches

~— @@

Y
Initialize supporting
modules (Python,

AWS Creds, Docker

Deployment Architecture o

Y

G it H U b ACt ion S P | p el | n e . If terraform, scraper Check Diff for If parser code or

code or pipeline yaml parser Dockerfile

terraform files or code

. . changes: changes:
* Check which files/folders have changes
. . Y
e Build and test changed projects Build scraper lambda ¥
zip with o:jeps and Login to ECR w/ AWS
« Terraform Plan changes to AWS - oo
infrastructure —
. Run scraper tests
e Terraform Apply on push to main branch Build docker

container for parser

(Production)

Y

Comment On PR
status of terraform
plan

Terraform format and
plan

* If parser containeror parser lambda code
is modified:

! Is push to ve
. . NoO in es
* Build/cache Parser container me
. Cl ECR ,
« Cleanup ECR repository delete old images
* Push latest container to ECR (Production)
Yes \ 4

Post run actions
(cache new images,
cache scraper zip)

Push built container
to ECR

Terraform Apply

Testing

Scraper

- Unit tests
- E2E test
- 26 tests, 92% coverage

3 warnings

Coverage report: 92%

Module statements missing excluded coverage
AllTextOfChildParser.py 26 100%
ChildofClassParser.py 21 100%
_init__.py 18 100%
abstract.py 11 100%
bootstrap.py 25 96%
dynamo_output.py 21 48%
83%

®

source_list_scraper.py
tests/__init__.py

tests/conftest.py
tests/sites_server.py
tests/test_all_text_of_child_parser.py
tests/test_child_of_class_parser.py
tests/test_e2e.py
tests/test_get_parsers.py
tests/test_source_list_scraper.py
Total

u e e e 9 e e e e e e e uLe s

Parser

- Unit tests - Unit tests
- 23 tests, 81% coverage - Ul tests
- 42 tests

-app_pipelined. py (base) ~/workspace/sdmay23-01/f

_blank_parser.py
sed_output.py yarn run v1.22.19

7dynamnﬁ:;‘:::.py

- Lpusopy src/tests/Queue.test.ts

e ” src/tests/Stack.test.ts
src/tests/GraphMapper.test.ts

src/tests/QueryMapper.test.ts

Coverage report: 81%

src/tests/FilterSider.test.tsx

src/tests/HomePageHeader . test. tsx

Module statements missing excluded coverage T
kgfcrparser/outputs/dynamo_marked_parse.py 25 14 [*] 44%

e 7 passed, 7 total

- 42 passed, 42 total
o ® total
87% ime: 4.115 s, estimated 6 s

98%

w
=]

kgfcrparser/parsers/nlp_parser.py 54
kgfcrparser/outputs/neodj_output.py 21
kgfcrparser/app_pipelined. py 60
kgfcrparser/inputs/dynamo_input.py 53
kgfcrparser/cvefetch.py 41
kgfcrparser/__init__.py 1 '+ Done in 4.50s.
kgfcrparser/context.py 13
kgfcrparser/inputs/__init__.py @
kgfcrparser/inputs/parser_input.py
kgfcrparser/inputs/simple_input.py
kgfcrparser/outputs/__init__.py
kgfcrparser/outputs/composed_output.py
kgfcrparser/outputs/neodjdrivers/__init__.py
kgfcrparser/outputs/parser_output.py
kgfcrparser/parsers/__init__.py
kgfcrparser/parsers/blank_parser.py
kgfcrparser/parsers/parser_parser.py
kagfcrparser/parsertypes.py

Total

0D 2 O 0 P O 999 O ® ® P N Ko
O HHE N OO RO OO WS

o
-]
[
~

Frontend

(develop) yarn test

src/tests/ExampleQueriesContainer.test.tsx

Key Contributions

* Brandon Richards e Alice Cheatum
e Create NER and RE model training * Define entitiesand relations
software, configure for GPUs and transformers,

* Researched relationship extraction techniques
* Wrote python script to fetch CVE data
* Annotated articles for training

uploadto S3

* Build and deploy React frontend for querying
and displaying KG

: : * Nicklas Cahill
* Micah Gwin _ o
* Setup the GitHub actions pipelineto) Ann-otated ArtlFIes for t.rz-alnmg .
* Cloud Infrastructure management and * Researched NER and RE training
lambda development. * Misc. supporting Python scripts
* Carter Kitelinger * Michael Watkins
e Researched NER and RE training, training metrics * Annotated articles for training
* Created example Neo4) Cypher queries * Generalinfrastructure

* Annotated articles for trainingmodels * Pipelined parser

Accomplishments

* NER and RE training pipeline using spaCy

 Scrape articles from source list on schedule and store in
NoSQL database

* Multi-threaded modular parser that reads input from article storage,
parses using trained models, and outputs to Neo4J Knowledge Graph

* React frontend with query builder, queries Neo4J and displays nodes
and edges

Demo

Challenges and Solutions

* Entity and relationship * Limited pipeline build minutes
definitions » Solution: Caching artifacts, rebuild
* Not too broad or too specific only if difference
* Changes disrupted training * Building and running parser
and annotating with dependencies
* Solution: Rework several times as a . Dependencies of parser are 2GB+
team . * Solution: Docker image uploaded
* BRAT annotation format and to AWS ECR
spaCy | * Converting graphical query into
* Solution: Write tool to Cypher statement
convert annotation format .+ Solution: BFS Algorithm

(considering line endings)

Future Work

* Training / Model

* NER—Train on
cybersecurity corpus

* RE — Improve accuracy,
more research

e Combineinto one model

e Use MCC to score and evaluate
models instead of F1

* CI/CD Pipeline

 Split develop and production
resources

* Parser

e Test for valid relations before
inserting into KG

* Knowledge Graph

 Migrate from Neo4J) on EC2 to AWS
Neptune

 Frontend

* Accounts
* Monitor usage
* Save queries

* Testing

* Integration tests between
components

Conclusion

* Many of the original project objectives
have been met
* Generate Cybersecurity Knowledge Graph

* Create and train a machine learning
model

* Aggregate information from a variety of
sources

e Additional stretch goals deemed
important for operation were also met
* Query KG from frontend
* Deploy to AWS cloud infrastructure
* Run automatically every 6 hours

e Use interfaces in components for
modularity

e Future enhancements

 Larger article dataset for

training/increase accuracy of NER
and RE

* Natural Language Processing for
frontend queries

* Parser constraints for valid
relations

e Overall improvement for code
structure/pipeline

