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Introduction

* Project Overview

* Perform information extraction on sources to determine cybersecurity
named entities and relations between them

* Build a knowledge graph from entities and relations
e Continuously update knowledge graph with new information from sources
* Query and visualize knowledge graph from frontend

* Objectives
* Efficient querying of cybersecurity entities and their relations

e Assist cybersecurity researchers and incident responders in
contextualizing latest threats

* Streamline decision-making for cybersecurity risk management
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Cybersecurity
Knowledge Graph
(CSKG)

. Knowledge Graph with domain-specificnodes and edges

. Nodes (Entities)
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. Malware Type
+ etc..

. Edges (Relationships)
. attacked
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*+  etc..
. Use ontologies to perform queries efficiently
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Implementation

Architecture
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Testing

Scraper

- Unit tests
- E2E test
- 26 tests, 92% coverage

3 warnings

Coverage report: 92%

Module statements missing excluded coverage
AllTextOfChildParser.py 26 100%
ChildofClassParser.py 21 100%
_init__.py 18 100%
abstract.py 11 100%
bootstrap.py 25 96%
dynamo_output.py 21 48%
83%

®

source_list_scraper.py
tests/__init__.py

tests/conftest.py
tests/sites_server.py
tests/test_all_text_of_child_parser.py
tests/test_child_of_class_parser.py
tests/test_e2e.py
tests/test_get_parsers.py
tests/test_source_list_scraper.py
Total

u e e e 9 e e e e e e e uLe s

Parser

- Unit tests - Unit tests
- 23 tests, 81% coverage - Ul tests
- 42 tests

-app_pipelined. py (base) ~/workspace/sdmay23-01/f

_blank_parser.py
sed_output.py yarn run v1.22.19

7dynamnﬁ:;‘:::.py

- Lpusopy src/tests/Queue.test.ts

e ” src/tests/Stack.test.ts
src/tests/GraphMapper.test.ts

src/tests/QueryMapper.test.ts

Coverage report: 81%

src/tests/FilterSider.test.tsx

src/tests/HomePageHeader . test. tsx

Module statements missing excluded coverage T
kgfcrparser/outputs/dynamo_marked_parse.py 25 14 [*] 44%

e 7 passed, 7 total

- 42 passed, 42 total
o ® total
87% ime: 4.115 s, estimated 6 s

98%

w
=]

kgfcrparser/parsers/nlp_parser.py 54
kgfcrparser/outputs/neodj_output.py 21
kgfcrparser/app_pipelined. py 60
kgfcrparser/inputs/dynamo_input.py 53
kgfcrparser/cvefetch.py 41
kgfcrparser/__init__.py 1 '+ Done in 4.50s.
kgfcrparser/context.py 13
kgfcrparser/inputs/__init__.py @
kgfcrparser/inputs/parser_input.py
kgfcrparser/inputs/simple_input.py
kgfcrparser/outputs/__init__.py
kgfcrparser/outputs/composed_output.py
kgfcrparser/outputs/neodjdrivers/__init__.py
kgfcrparser/outputs/parser_output.py
kgfcrparser/parsers/__init__.py
kgfcrparser/parsers/blank_parser.py
kgfcrparser/parsers/parser_parser.py
kagfcrparser/parsertypes.py

Total
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Frontend

(develop) yarn test

src/tests/ExampleQueriesContainer.test.tsx




Key Contributions

* Brandon Richards e Alice Cheatum
e Create NER and RE model training * Define entitiesand relations
software, configure for GPUs and transformers,

* Researched relationship extraction techniques
* Wrote python script to fetch CVE data
* Annotated articles for training

uploadto S3

* Build and deploy React frontend for querying
and displaying KG

: : * Nicklas Cahill
* Micah Gwin _ o
* Setup the GitHub actions pipelineto ) Ann-otated ArtlFIes for t.rz-alnmg .
* Cloud Infrastructure management and * Researched NER and RE training
lambda development. * Misc. supporting Python scripts
* Carter Kitelinger * Michael Watkins
e Researched NER and RE training, training metrics * Annotated articles for training
* Created example Neo4) Cypher queries * Generalinfrastructure

* Annotated articles for trainingmodels * Pipelined parser



Accomplishments

* NER and RE training pipeline using spaCy

 Scrape articles from source list on schedule and store in
NoSQL database

* Multi-threaded modular parser that reads input from article storage,
parses using trained models, and outputs to Neo4J Knowledge Graph

* React frontend with query builder, queries Neo4J and displays nodes
and edges



Demo




Challenges and Solutions

* Entity and relationship * Limited pipeline build minutes
definitions » Solution: Caching artifacts, rebuild
* Not too broad or too specific only if difference
* Changes disrupted training * Building and running parser
and annotating with dependencies
* Solution: Rework several times as a . Dependencies of parser are 2GB+
team . * Solution: Docker image uploaded
* BRAT annotation format and to AWS ECR
spaCy | * Converting graphical query into
* Solution: Write tool to Cypher statement
convert annotation format .+ Solution: BFS Algorithm

(considering line endings)



Future Work

* Training / Model

* NER—Train on
cybersecurity corpus

* RE — Improve accuracy,
more research

e Combineinto one model

e Use MCC to score and evaluate
models instead of F1

* CI/CD Pipeline

 Split develop and production
resources

* Parser

e Test for valid relations before
inserting into KG

* Knowledge Graph

 Migrate from Neo4J) on EC2 to AWS
Neptune

 Frontend

* Accounts
* Monitor usage
* Save queries

* Testing

* Integration tests between
components



Conclusion

* Many of the original project objectives
have been met
* Generate Cybersecurity Knowledge Graph

* Create and train a machine learning
model

* Aggregate information from a variety of
sources

e Additional stretch goals deemed
important for operation were also met
* Query KG from frontend
* Deploy to AWS cloud infrastructure
* Run automatically every 6 hours

e Use interfaces in components for
modularity

e Future enhancements

 Larger article dataset for

training/increase accuracy of NER
and RE

* Natural Language Processing for
frontend queries

* Parser constraints for valid
relations

e Overall improvement for code
structure/pipeline



