
Knowledge Graphs for 
Cybersecurity Reasoning

sdmay23-01

Alice Cheatum​ Nicklas Cahill​ Michael Watkins​

Brandon Richards​ Carter Kitelinger​ Micah Gwin​



Introduction
• Project Overview

• Perform information extraction on sources to determine cybersecurity 
named entities and relations between them

• Build a knowledge graph from entities and relations

• Continuously update knowledge graph with new information from sources

• Query and visualize knowledge graph from frontend

• Objectives
• Efficient querying of cybersecurity entities and their relations

• Assist cybersecurity researchers and incident responders in 
contextualizing latest threats

• Streamline decision-making for cybersecurity risk management



Knowledge Graph
• Represents a network of real-world 

entities and the relationship(s) between 
them.

• 3 main components:

o Nodes

o Edges

o Labels

• Used by search engines to complete 
search queries to give expanded 
information.

• Example Query: Bob searches "Mona 
Lisa".



Cybersecurity 
Knowledge Graph 
(CSKG)
• Knowledge Graph with domain-specific nodes and edges

• Nodes (Entities)

• Organization

• System

• Threat Group

• Vulnerability

• Malware Type

• etc...

• Edges (Relationships)

• attacked

• exploits

• used

• attackVector

• manages

• isType

• deployed

• executes

• etc...

• Use ontologies to perform queries efficiently

• Example Query: Attacks on PSN



Implementation 
Architecture
• Trainer

• Python spaCy project, ran 
when annotations change

• Scraper
• AWS Lambda, trigger every 6 hours

• Article storage
• DynamoDB database

• Parser
• AWS Lambda with ECR Image, trigger 

every 6 hours

• Knowledge Graph
• Neo4J running on EC2, AWS API 

Gateway proxy

• Frontend
• Static React webapp hosted with AWS 

S3 and AWS CloudFront



Deployment Architecture
GitHub Actions Pipeline:

• Check which files/folders have changes

• Build and test changed projects

• Terraform Plan changes to AWS 
infrastructure

• Terraform Apply on push to main branch 
(Production)

• If parser container or parser lambda code 
is modified:

• Build/cache Parser container

• Cleanup ECR repository

• Push latest container to ECR (Production)



Testing

Scraper FrontendParser

- Unit tests
- E2E test
- 26 tests, 92% coverage

- Unit tests
- UI tests
- 42 tests

- Unit tests
- 23 tests, 81% coverage



Key Contributions

• Alice Cheatum

• Define entities and relations

• Researched relationship extraction techniques

• Wrote python script to fetch CVE data

• Annotated articles for training

• Nicklas Cahill

• Annotated Articles for training

• Defined/Redefined entities and relations

• Researched NER and RE training

• Misc. supporting Python scripts

• Michael Watkins

• Annotated articles for training

• General infrastructure

• Pipelined parser

• Brandon Richards

• Create NER and RE model training 
software, configure for GPUs and transformers, 
upload to S3

• Build and deploy React frontend for querying 
and displaying KG

• Micah Gwin

• Setup the GitHub actions pipeline to 
monitor branches, then build and deploy IAC.

• Cloud Infrastructure management and 
lambda development.

• Carter Kitelinger

• Researched NER and RE training, training metrics

• Created example Neo4J Cypher queries

• Annotated articles for training models



Accomplishments

• NER and RE training pipeline using spaCy

• Scrape articles from source list on schedule and store in 
NoSQL database

• Multi-threaded modular parser that reads input from article storage, 
parses using trained models, and outputs to Neo4J Knowledge Graph

• React frontend with query builder, queries Neo4J and displays nodes 
and edges



Demo



Challenges and Solutions

• Entity and relationship 
definitions
• Not too broad or too specific
• Changes disrupted training 

and annotating
• Solution: Rework several times as a 

team

• BRAT annotation format and 
spaCy
• Solution: Write tool to 

convert annotation format 
(considering line endings)

• Limited pipeline build minutes
• Solution: Caching artifacts, rebuild 

only if difference

• Building and running parser 
with dependencies
• Dependencies of parser are 2GB+
• Solution: Docker image uploaded 

to AWS ECR

• Converting graphical query into 
Cypher statement
• Solution: BFS Algorithm



Future Work

• Training / Model
• NER – Train on 

cybersecurity corpus

• RE – Improve accuracy, 
more research

• Combine into one model

• Use MCC to score and evaluate 
models instead of F1

• CI/CD Pipeline
• Split develop and production 

resources

• Parser
• Test for valid relations before 

inserting into KG

• Knowledge Graph
• Migrate from Neo4J on EC2 to AWS 

Neptune

• Frontend
• Accounts
• Monitor usage
• Save queries

• Testing
• Integration tests between 

components



Conclusion

• Many of the original project objectives 
have been met
• Generate Cybersecurity Knowledge Graph
• Create and train a machine learning 

model
• Aggregate information from a variety of 

sources

• Additional stretch goals deemed 
important for operation were also met
• Query KG from frontend
• Deploy to AWS cloud infrastructure
• Run automatically every 6 hours
• Use interfaces in components for 

modularity

• Future enhancements
• Larger article dataset for 

training/increase accuracy of NER 
and RE

• Natural Language Processing for 
frontend queries

• Parser constraints for valid 
relations

• Overall improvement for code 
structure/pipeline


