
● The training component of this project is
a spaCy project that is configured to
train an NER and RE model from
manually annotated articles.These
models are then uploaded to S3 to be
used when parsing articles.

● The scraper is a Python module
responsible for scraping from the source
list and storing articles in database. Web
scraping is done the scrapy library. The
scraper is built and deployed to AWS
Lambda where it runs on a schedule to
provide up-to-date articles.

● The parser is a Python module
responsible for using a pre-trained
model to parse entities and relations
from article text. It then stores the
entities and relations as nodes and
edges in a knowledge graph. The spaCy
library provides a framework for
performing natural language processing
on text using our model. An image is
then built using Docker and uploaded to
AWS ECR to later execute.

● The knowledge graph is stored in a
Neo4J database running on an AWS EC2
instance. It is able to be queried using
HTTPS and JSON using AWS API
Gateway.

● The frontend is a static webapp written
in React and TypeScript. It includes a
visual query builder, queries the Neo4J
Knowledge Graph, and displays the
results. The frontend is stored in AWS
S3 and distributed by AWS CloudFront.

Knowledge Graphs for Cybersecurity Reasoning
Alice Cheatum, Brandon Richards, Nicklas Cahill, Carter Kitelinger,

Michael Watkins, Micah Gwin

With cybersecurity threats constantly
emerging, up-to-date knowledge is
required while working in the
cybersecurity field. Cybersecurity
researchers, incident responders,
and system administrators need to
be able to efficiently query
information about a specific
software, malware, threat, etc., as
well as new and emerging ones.
Sorting through relevant security
news articles can be challenging and
time consuming.
Objectives:
● Efficient querying of cybersecurity

entities and their relations
● Assist cybersecurity researchers

and incident responders in
contextualizing latest threats

● Streamline decision-making for
cybersecurity risk management

Introduction

Conclusion

Methodology used to delegate work
and manage progress: Agile.
● All work was divided into sprints

and stories.
● The team used a Kanban board to

assign group members cards to
work on.

Architecture design:
● Functionality of the project is

divided between modules (Parser,
Scraper, etc).

● Modules communicate by passing
data through a variety of inputs
and outputs (files, databases, json
api request).

● News on cybersecurity can
often be hard to find and
understand.

● Extracting entities and
relations from article text can
be done using Named-Entity
Recognition and Relation
Extraction.

● Condensing the information
into a knowledge graph
formats cybersecurity topics
in a coherent overview of new
and emerging threats.

● Allows users to better
comprehend large amounts of
cybersecurity information.

Results

● Create NER and RE training
pipeline using spaCy.

● Scrape articles from source
list on schedule and store in
NoSQL database.

● Build multi-threaded modular
parser that reads input from
article storage, parses article
text using trained models, and
stores output in Neo4J
knowledge graph database.

● Deploy React frontend with
query builder which queries
Neo4J and displays nodes and
edges.

Implementation

Methodology

The solution to this problem is a
system that can collect articles,
parse and store that information,
then generate a knowledge graph.
The graph can then be efficiently
queried to streamline the research
and decision-making process for
cybersecurity professionals.
Knowledge Graph Overview:
● Represents a network of
● real-world entities and

relationships between them
● Consists of 3 main components:

Nodes, Edges, and Labels
● Used by search engines to

complete search queries and give
expanded data

Nodes in the graph should be entities
of interest in the cybersecurity
domain. For example, "Organization",
"Threat Group", and "Vulnerability".
The process of extracting these
entities is called Named-Entity
Recognition (NER). The edges in the
graph should be the relations
between these entities. The process
of extracting these relations is called
Relationship Extraction (RE).
Together these tasks are called
Information Extraction (IE).

Overview

