
	 	 	

	

	 	 	

	

		
 	

Team	1		
Benjamin	Blakely	-	Client	
Benjamin	Blakely	-	Adviser	

Brandon	Richards	-	Frontend	Development	Lead	
Micah	Gwin	-	Python/ML	Development	

Alice	Cheatum	-	Programmer	
Nicklas	Cahill	-	Tester/Programmer	

Michael	Watkins	-	Python/ML	Development	
Carter	Kitelinger	-	Client	Interaction	

	
sdmay23-01@iastate.edu	

https://sdmay23-01.sd.ece.iastate.edu/	
Revised:	12/02/2022	

	

Knowledge	Graphs	for	
Cybersecurity	Reasoning	

DESIGN	DOCUMENT	

	 	 	

	

	

	
	
Development	Standards	&	Practices	Used	
An	essential	development	practice	for	our	project	is	the	proper	use	of	version	control	such	as	Git	in	
addition	to	testing	standards.	Everyone	on	the	team	uses	feature	branches	and	pull	requests	when	
writing	code	to	ensure	a	clean	main	branch.	These	pull	requests	are	to	be	reviewed	by	at	least	one	
other	team	member	for	feedback.	In	addition,	pull	requests	can	be	easily	reverted	if	there	is	an	
issue.	Testing	standards	include	minimum	coverage	of	75%	for	each	module	and	100%	of	tests	
should	pass	before	code	is	committed.	Specific	specifications	are	also	considered	in	this	project,	
including:	

• PEP8	
• NIST	
• CVE	
• CVSS	

	

Summary	of	Requirements	

• The	product	should	use	no	less	than	3	sources	for	cybersecurity	information.	
• The	product	should	crawl	sources	for	new	information	at	least	once	a	day.	
• The	product	should	extract	information	using	HTML	parsing,	OCR,	and/or	API.	
• The	product	should	perform	Information	Extraction	by	using	a	trained	model.	
• The	product	should	produce	a	knowledge	graph	containing	cybersecurity	entities	and	

relations.	
• The	product	should	persist	this	knowledge	graph	using	the	graph	database	Neo4j.	
• Extensible	by	future	developers	by	using	interfaces	and	writing	modular	code.	
• Code	should	have	documentation	on	function	definitions	and	up-to-date	README.	
• The	crawl	speed	should	be	rated	as	to	not	disturb	the	resources	of	the	sources.	
• Only	open-source	libraries	should	be	used	in	the	product.	
• Low-medium	power	GPU	cluster	for	NER	model	training	
• Responses	to	queries	should	support	being	displayed	in	graph	or	tree	form.	
• The	user	should	be	able	to	build	queries	using	date,	company,	and	vulnerability	filters.	
• Query	results	should	be	returned	in	less	than	30	seconds.	

	

Applicable	Courses	from	Iowa	State	University	Curriculum		
• COMS	311	

Executive	Summary	

	 	 	

	

	

• CprE	310	
• ENG	314	
• COMS	309	
• COMS	319	
• CYBE	230	
• CYBE	231	

New	Skills/Knowledge	acquired	that	was	not	taught	in	courses	
• Python	
• Machine	Learning	
• Web	Scraping	
• Docker	
• MongoDB	
• TypeScript	
• Neo4j	
• Python	Libraries:	BeautifulSoup,	scrapy,	coverage,	unittest,	spaCy	

 	

	 	 	

	

	

Table	of	Contents	
1	 Team	..	6	

1.1	 Team	Members	...	6	

1.2	 Required	Skill	Sets	for	Your	Project	..	6	

1.3	 Skill	Sets	covered	by	the	Team	..	6	

1.4	 Project	Management	Style	Adopted	by	the	team	...	6	

1.5	 Initial	Project	Management	Roles	...	6	

2	 Introduction	...	7	

2.1	 Problem	Statement	..	7	

2.2	 Intended	Users	and	Uses	..	8	

2.2.1	Cybersecurity	Researcher	...	8	

2.2.1.1	Persona	..	8	

2.2.1.2	Empathy	Map	...	8	

2.2.2	Incident	Responder	...	9	

2.2.2.2	Empathy	Map	...	10	

2.2.3	Sys	Admin	...	11	

2.2.3.2	Empathy	Map	..	11	

2.3	 Requirements	&	Constraints	...	12	

2.4	 Engineering	Standards	..	13	

3	Project	Plan	...	14	

3.1		Project	Management/Tracking	Procedures	...	14	

3.2	Task	Decomposition	..	14	

3.3	Project	Proposed	Milestones,	Metrics,	and	Evaluation	Criteria	...	15	

3.4	Project	Timeline/Schedule	..	16	

3.5	Risks	And	Risk	Management/Mitigation	...	16	

3.6	Personnel	Effort	Requirements	..	17	

3.7	Other	Resource	Requirements	..	18	

4		Design	...	18	

4.1	Design	Context	...	18	

4.1.1	Broader	Context	...	18	

4.1.2	Prior	Work/Solutions	..	19	

4.1.3	Technical	Complexity	..	19	

	 	 	

	

	

4.2	Design	Exploration	...	20	

4.2.1	Design	Decisions	..	20	

4.2.2	Ideation	..	21	

4.2.3	Decision-Making	and	Trade-Off	..	22	

4.3	 Proposed	Design	..	22	

4.3.1	Overview	..	22	

4.3.2	Detailed	Design	and	Visual(s)	...	23	

4.3.2.1	Scraper	...	23	

4.3.2.2	Parser	..	23	

4.3.2.3	Knowledge	Graph	...	25	

4.3.2.4	Frontend	...	25	

4.3.3	Functionality	..	26	

4.3.4	Areas	of	Concern	and	Development	..	26	

4.4	Technology	Considerations	..	27	

4.5	Design	Analysis	...	28	

5		Testing	...	28	

5.1	Unit	Testing	...	29	

5.2	Interface	Testing	...	29	

5.3	 Integration	Testing	..	30	

5.4	 System	Testing	...	30	

5.5	 Regression	Testing	...	30	

5.6	 Acceptance	Testing	..	31	

5.7	 Security	Testing	...	31	

5.8	 Results	..	31	

6		Implementation	...	32	

7		Professional	Responsibility	...	32	

7.1	 Areas	of	Responsibility	..	33	

7.2	Project	Specific	Professional	Responsibility	Areas	..	34	

7.3	Most	Applicable	Professional	Responsibility	Area	..	36	

8		Closing	Material	..	36	

8.1	Discussion	...	36	

8.2	Conclusion	...	36	

	 	 	

	

	

8.3	References	..	36	

8.4	Appendices	...	37	

8.4.1	Team	Contract	...	37	

	

	

	

 	

	 	 	

	

	

1 Team	

1.1 TEAM	MEMBERS	

• Brandon	Richards	
• Micah	Gwin	
• Alice	Cheatum	
• Nicklas	Cahill	
• Michael	Watkins	
• Carter	Kitelinger	

1.2 REQUIRED	SKILL	SETS	FOR	YOUR	PROJECT	

• Python	Programming	Experience		
• React		
• Cyber	Security	Knowledge		
• TypeScript		
• Machine	Learning	Knowledge		
• Docker		
• MongoDB	

1.3 SKILL	SETS	COVERED	BY	THE	TEAM	

• Python	Programming	Experience	-	All		
• React	–	Brandon,	Micah,	Michael		
• Cyber	Security	Knowledge	–	Alice,	Nicklas,	Carter,	Michael		
• TypeScript	–	Brandon,	Michael		
• Machine	Learning	Knowledge	-	Michael		
• Docker	–	Brandon,	Michael		
• MongoDB	-	Michael	

1.4 PROJECT	MANAGEMENT	STYLE	ADOPTED	BY	THE	TEAM	

Our	team	has	chosen	agile	as	a	project	management	style	because	our	project	goal	of	developing	a	
knowledge	graph	will	require	many	iterations.	New	knowledge	and	metrics	that	we	acquire	during	
sprints	will	help	us	better	understand	and	plan	for	the	next	set	of	tasks	we	need	to	perform	in	the	
next	sprint.	

1.5 INITIAL	PROJECT	MANAGEMENT	ROLES	

• Brandon	Richards	—	Frontend	Development	Lead	
• Micah	Gwin	—	Python/ML	Development	
• Alice	Cheatum	—	Programmer	
• Nicklas	Cahill	—	Tester/Programmer	
• Michael	Watkins	—	Python/ML	Development	
• Carter	Kitelinger	—	Client	Interaction	

	 	 	

	

	

2 Introduction	

2.1 PROBLEM	STATEMENT	

Cybersecurity	threat	reporting	is	currently	spread	out	across	multiple	sources	and	written	in	a	non-
standardized	format.	Information	is	updated	frequently,	changing	the	landscape	and	requiring	
much	effort	to	parse	and	read	for	relevant	information.	Cybersecurity	researchers,	Incident	
Responders,	and	System	Administrators	need	to	be	able	to	efficiently	query	information	about	a	
specific	software,	malware,	threat,	etc.,	as	well	as	new	and	emerging	ones.	Generating	a	
Cybersecurity	Knowledge	Graph	(CSKG)	that	contains	relevant	datapoints	will	allow	for	efficient	
information	storage	and	querying	capability.	

	

	

Figure:	Example	Cybersecurity	Knowledge	Graph	

	 	 	

	

	

	

2.2 INTENDED	USERS	AND	USES	

2.2.1	CYBERSECURITY	RESEARCHER	

2.2.1.1	PERSONA	

Demographics	

- Post-grad	students	

Hobbies	and	interests	

- Cybersecurity	
- Data	enthusiasts	
- Tech	savvy	

Motivations	(Who	do	they	want	to	be?	What	do	they	want	to	do?	How	do	they	want	to	feel?)	

- They	want	to	efficiently	find	up-to-date	information	about	new	or	specific	cybersecurity	
threats.	

- They	want	their	computer	systems	to	feel	secure.	

Personality	and	emotions	

- Paranoia?	
- Intelligent	
- Flexible	

Values	(What	is	important	to	their	identity?)	

- Anonymity	
- Privacy	
- Informed	

2.2.1.2	EMPATHY	MAP	

Who?	Cybersecurity	Researcher	

What	/	need	to	do?	

- Be	knowledgeful	of	relevant	current	threats.	
- Understand	context	and	implication	of	threats	

See?	

- News	articles	/	research	papers	of	new	threats	
- Attacks	against	enterprise	and	personal	computer	systems.	

Say?	

- I	wish	there	was	a	quicker	and	easier	way	to	find	this	stuff!	

Hear?	

	 	 	

	

	

- Other	researchers	talking	about	cybersecurity.	
- Queries	about	how	a	cybersecurity	threat	affects	a	specific	entity	(company,	university,	

software,	etc.)	

Do?	

- Look	at	scattered	reporting	of	cybersecurity	threat.	
- Parsing	for	relevance.	

	

Think?		

- I	hate	having	to	parse	through	many	publications	to	find	relevant	information	
- I	hate	having	to	maintain	a	list	of	reliable	sources	

Feel?		

- Determined		
- Curious	
- Frustrated		
- Annoyed		
- Overwhelmed	

Need	Statement:	

A	Cybersecurity	Researcher	needs	a	way	to	parse	relevant	information	quickly	and	efficiently	
because	the	landscape	changes	rapidly	and	sources	are	spread	out	and	contain	irrelevant	details.	

	

Benefit:	

Researchers	would	see	a	reduction	in	time	spent	searching	for	new	and	related	information,	leading	
to	better	context	and	comprehension.	

	

2.2.2	INCIDENT	RESPONDER	

2.2.2.1	PERSONA	

Demographics	

- College	Grad	
- Various	Certificates	

Hobbies	and	interests	

- Penetration	testing	
- Keeping	networks	secure	
- Cybersecurity	

Motivations	(Who	do	they	want	to	be?	What	do	they	want	to	do?	How	do	they	want	to	feel?)	

	 	 	

	

	

- Protecting	business	operations	
- Protecting	client	information		

Personality	and	emotions	

- Investigative	
- Curious	
- Defensive	
- Eye	for	small	details	

Values	(What	is	important	to	their	identity?)	

- Intelligence	
- Competence	
- Integrity	

	

2.2.2.2	EMPATHY	MAP	

Who?	Incident	Responder	

What	/	need	to	do?	

- Respond	to	network	intrusions,	access	policy	violations,	cybersecurity	threats	
- Defend	systems	owned	by	their	employers	from	attacks	in	the	future	

See?	

- Current	threats	or	intrusions	to	the	company/business	they	are	working	for	

Say?	

- “I	wish	I	knew	of	a	quick	and	easy	way	to	find	information	about	this	new	vulnerability!”	

Hear?		

- Is	our	infrastructure	safe?	
- We’ve	had	a	network	intrusion;	you	need	to	fix	this.	

Do?	

- Investigate	and	patch	exploited	systems	

Think?		

- Which	software	or	hardware	flaw	is	responsible	for	this	intrusion?	
- Who	attacked	us?	

Feel?		

- Attacked	
- Defensive	
- Rushed	
- Panicked	

	 	 	

	

	

	

Need	Statement:	

An	Incident	Responder	needs	a	way	to	find	vulnerabilities	quickly	because	investigating	and	
patching	cybersecurity	threats	requires	up-to-date	information	on	a	time	crunch.	

	

Benefit:	

Quicker	information	gathering	and	analysis	results	in	a	faster	response	time	to	threats	and	stronger	
defenses	in	place	for	next	time.	

	

2.2.3	SYS	ADMIN	

2.2.3.1	PERSONA	

Demographics	

- At	least	Highschool	Grad	
- Certificates	

Hobbies	and	interests	

- 	Software	or	hardware	systems	
- Networks	
- Servers	
- Maybe	a	mild	interest	in	cybersecurity	

Motivations	(Who	do	they	want	to	be?	What	do	they	want	to	do?	How	do	they	want	to	feel?)	

- Maintain	the	systems	they	are	responsible	for,	focusing	on	uptime	and	usability.	

Personality	and	emotions	

- Meticulous	
- Overworked	
- Problem	solver	

Values	(What	is	important	to	their	identity?)	

- Efficiency	
- Network/server	uptime	
- Accessibility	
- Supporting	end-users	

2.2.3.2	EMPATHY	MAP	

Who?	Sys	Admin	

	 	 	

	

	

What	/	need	to	do?	

- Keep	the	systems	they	are	responsible	for	secure	
- Know	which	threats	are	most	relevant	
- Balance	security	with	usability	of	the	systems	

See?	

- News	articles	about	new	vulnerabilities,	exploits,	and	attacks	

Say?	

- Why	isn’t	this	working?	
- What	new	vulnerabilities	are	there	for	the	software	we	run?	

Hear?	

- Why	isn’t	this	working?	
- Wasn’t	this	supposed	to	be	secure?	
- I	thought	you	maintained	this?	

Do?	

- Maintain	hardware	and	software	on	many	systems	

Think?		

- I	dislike	having	to	keep	up	with	the	constant	cybersecurity	knowledge	while	still	needing	
to	maintain	systems	

Feel?		

- Overwhelmed	
- Unfamiliar	

Need	Statement:	

A	Sys	Admin	needs	a	way	to	learn	about	current	cybersecurity	threats	without	in-depth	knowledge	
because	their	systems	need	to	be	secure	but	they	also	have	other	things	to	focus	and	work	on.	

Benefit:	

Can	save	time	understanding	cybersecurity	problems,	allowing	for	communication	with	others,	and	
making	more	time	for	administrating	systems.	

	

2.3 REQUIREMENTS	&	CONSTRAINTS	

Functional	Requirements	

- The	product	should	use	no	less	than	3	sources	for	cybersecurity	information.	
- The	product	should	crawl	sources	for	new	information	at	least	once	a	day.	
- The	product	should	extract	information	using	HTML	parsing,	OCR,	and/or	API.	
- The	product	should	perform	Information	Extraction	by	using	a	trained	model.	

	 	 	

	

	

- The	product	should	produce	a	knowledge	graph	containing	cybersecurity	entities	and	
relations.	

- The	product	should	persist	this	knowledge	graph	using	the	graph	database	Neo4j.	

Non-Functional	Requirements	

- Extensible	by	future	developers	by	using	interfaces	and	writing	modular	code.	
- Code	should	have	documentation	on	function	definitions	and	up-to-date	README.	
- The	crawl	speed	should	be	rated	as	to	not	disturb	the	resources	of	the	sources.	
- Only	open-source	libraries	should	be	used	in	the	product.	

Resource	Requirements	

- Low-medium	power	GPU	cluster	for	NER	model	training	

Aesthetic	Requirements	

- Responses	to	queries	should	support	being	displayed	in	graph	or	tree	form.	

User	Experiential	Requirements	

- The	user	should	be	able	to	build	queries	using	date,	company,	and	vulnerability	filters.	
- Query	results	should	be	returned	in	less	than	30	seconds.	

	

2.4 ENGINEERING	STANDARDS	

- PEP8	
o PEP	8	is	the	official	style	guide	for	Python	code.	Our	team’s	code	will	follow	this	

style	guide	to	ensure	maximum	readability	and	avoid	developer	issues	due	to	
different	coding	styles	in	the	same	project.		

- NIST	
o NIST	has	many	definitions	on	various	cybersecurity	topics	that	we	will	utilize	in	

our	project.	Our	project	will	provide	quick	and	easy	information	that	has	ties	to	
NIST	Cybersecurity	Framework	(CSF)	and	NIST	Risk	Management	Framework	
(RMF),	thus	these	standards	will	be	incorporated	into	the	end	product.	

- CVE	
o Common	Vulnerabilities	and	Exposures	is	a	standard	for	computer	security	flaws	

our	project	will	need	to	follow	to	obtain,	process,	and	serve	our	cybersecurity	
information.	Using	CVE	will	keep	vulnerabilities	tied	to	their	initial	reports,	which	
include	a	description	of	the	flaw,	making	it	easier	for	users	to	follow	a	chain	of	
information	from	our	knowledge	graph.	

- CVSS	
o The	Common	Vulnerability	Scoring	System	will	be	used	in	our	project	due	to	our	

interaction	with	vulnerabilities.	This	framework	has	three	metrics	that	are	used	to	
rate	the	severity	of	vulnerabilities	our	knowledge	graph	will	contain.	We	will	
interpret	and	display	data	in	a	CVSS	format	to	remain	consistent	with	other	
sources	of	information	and	improve	comprehension	by	our	users.	

	 	 	

	

	

	

3	Project	Plan	

3.1		PROJECT	MANAGEMENT/TRACKING	PROCEDURES	

Our	team	has	chosen	agile	as	a	project	management	style	because	our	project	goal	of	developing	a	
knowledge	graph	will	require	many	iterations.	New	knowledge	and	metrics	that	we	acquire	during	
sprints	will	help	us	better	understand	and	plan	for	the	next	set	of	tasks	we	need	to	perform	in	the	
next	sprint.	

Our	team	is	going	to	use	Git	as	a	VCS	and	GitHub	to	host	our	repository.	We	will	also	be	using	JIRA	
as	a	ticketing	system	to	better	track	tasks,	subtasks,	sprints,	backlog	items,	and	responsibility	for	
each	task.	

	

3.2	TASK	DECOMPOSITION	

1. Determine	list	of	sources	to	obtain	news	articles	and	blog	posts.	
a. Inspect	sources	for	legitimacy	and	reputation	
b. Record	URLs	of	main	page	and/or	specific	pages	of	interest	(e.g.,	Malware	blog)	

2. Develop	scraper	to	obtain	news	articles,	blog	posts,	etc.,	using	Scrapy	
a. Select	a	programming	language	
b. Select	libraries	to	perform	downloads	and	parsing	of	HTML	
c. Create	file	specification	for	storing	list	of	sources	
d. Write	code	for	scraper	
e. Write	testing	code	for	scraper	
f. Output	artifacts	for	later	use	by	NER	model	
g. Containerize	with	Docker	

3. Develop	one	or	more	methods	to	clean	up	articles	(may	vary	depending	on	type	of	article)	
a. Research	existing	methods	for	cleaning	up	irrelevant	information	
b. (Potentially)	Manually	annotate	relevant	vs.	irrelevant	data	in	documents	
c. Verify	on	test	cases	that	relevant	information	isn’t	being	destroyed	

4. Extract	relevant	entities	(vulns,	companies,	software,	exploits,	etc.)	and	the	relationships	
between	them	

a. Research	existing	annotation	techniques	and	cybersecurity-specific	NER	models	
b. Determine	if	we	need	to	train	custom	NER	model	
c. (Potentially)	Train	NER	model:	

i. Manually	annotate	set	of	documents	from	selected	sources	
ii. Perform	supervised	machine	learning	to	train	NER	model	

d. Generate	entities	and	relationships	from	cleaned-up	source	information	
5. Use	extracted	entities	and	relationships	to	generate	knowledge	graph	

a. Collect	output	from	Information	Extraction	
b. Insert	into	graph	database	

6. Run	pipeline	created	in	steps	2-5	periodically	and	continuously	on	new	articles	
a. Create	job	to	run	at	interval	

	 	 	

	

	

b. Determine	if	new	articles	of	interest	have	been	posted	
c. Run	new	articles	through	pipeline	

7. Develop	a	web	interface	to	run	queries	on	the	graph	
a. Design	

i. Develop	prototype	
ii. Receive	feedback	from	client	

b. Develop	
i. Select	framework	to	make	website	
ii. Create	API	to	query	knowledge	graph	
iii. Implement	designs	from	prototype	
iv. Implement	filters	to	query	the	graph	
v. (Stretch	goal)	Use	natural	language	to	query	the	graph	

	

3.3	PROJECT	PROPOSED	MILESTONES,	METRICS,	AND	EVALUATION	CRITERIA	

1. Sources	
1.1. 3	or	more	sources	have	been	selected	to	scrape	for	information	

2. Scraper	
2.1. Scraper	can	download	and	parse	input	sources.	
2.2. Runs	inside	Docker	container.	
2.3. Identifies	more	recent	unprocessed	articles	with	100%	accuracy.	

3. Article	cleanup	
3.1. Articles	achieve	removing	unnecessary	information	with	25%	accuracy.	
3.2. Articles	achieve	removing	unnecessary	information	with	50%	accuracy.	

4. Extract	entities	and	relationships	
4.1. Software	can	identify	subjects	(companies,	operating	systems,	vulnerability,	etc.)	

with	75%	accuracy.	
4.2. Software	can	identify	relationships	(vulnerability	works	on	this	OS	and	application	

run	by	this	company)	with	50%	accuracy.	
5. Generate	knowledge	graph	

5.1. Contains	more	than	15	entities	including	companies,	operating	systems,	
applications,	malware,	etc.).	

5.2. Nodes	have	properly	labeled	edges	with	75%	accuracy.	
6. Pipeline	periodic	and	continuous	running	

6.1. The	job	runs	on	the	specific	interval	100%	of	the	time.	
7. Web	Interface	

7.1. Prototype	delivered	to	client	with	80%	satisfaction	(satisfaction	to	be	quantified	
with	rating	survey).	

7.2. API	created	to	query	100%	of	knowledge	graph	entities	and	relationships.	
7.3. Filtering	by	Company,	Application,	OS,	Vulnerability,	or	Malware	can	be	

performed.	
7.4. (Stretch)	Natural	Language	query	can	serve	intended	results	50%	of	the	time.	

	 	 	

	

	

3.4	PROJECT	TIMELINE/SCHEDULE	

Semester	1	Schedule	

	

Semester	2	Schedule	

	
	

3.5	RISKS	AND	RISK	MANAGEMENT/MITIGATION	

Description	 Likelihood	 Consequences	 Risk	 Mitigation	

Training	uses	too	
many	resources	

Unlikely	 Major	 High	 Optimize	code,	set	
resource	usage	limits,	

	 	 	

	

	

allocate	more	GPUs	for	
cluster		

Model	is	trained	
incorrectly	

Moderate	 Moderate	 High	 Start	early,	involve	
Michael	in	most	
decisions	due	to	
experience,	Research	

Source	is	too	
difficult	to	perform	
extraction	

Moderate	 Moderate	 High	 Pre-scout	source’s	
format,	plan	extraction	
logic	ahead	

Resources	too	high	
to	display	query	

Moderate	 Moderate	 High	 Limit	number	of	
displayed	responses	

Sources	go	down	
or	block	our	traffic	
because	of	too	
much	scraping	too	
fast	

Likely	 Major	 Extreme	 Strict	rate	limits	

	

3.6	PERSONNEL	EFFORT	REQUIREMENTS	

Tasks	This	
Semester	

Sources	(1)	 Scraper	
Design	(2)	

Clean	Up	
Articles	(3)	

Extract	
Entities	
and	
Relations	
(4)	

Generate	
Knowledge	
Graph	(5)	

Total	for	
Semester	1	

Estimated	
Hours	Per	
Person	

2	hours	 15	hours	–	
Program	
Team	

10	Hours	–	
CybSec	
Team	

20	-	30	
hours	–	
Both	
Teams	

(Varies	
Greatly)	

8	hours	–	
Both	
Teams	

68-78	
Hours	

- Program	Team	Consisting	of:	Brandon	Richards,	Michael	Watkins,	and	Micah	Gwin.	
- CybSec	Team	Consisting	of:	Alice	Cheatum,	Nicklas	Cahill,	and	Carter	Kitelinger.	

Based	on	the	table	above,	we	broke	the	hours	down	into	what	we	thought	we	could	finish	in	the	
first	semester.	Using	the	tasks	from	the	Task	Decomposition	section,	we	decided	it	would	be	best	if	
we	split	into	two	teams:	the	Program	Team,	handling	most	of	the	Python	programming,	and	the	
CybSec	Team,	handling	most	of	the	non-programming	work	that	involves	Cyber	Security	
knowledge.	As	provided	in	the	table	above,	each	team	was	given	an	estimated	hours	per	person.	

	 	 	

	

	

This	also	gives	each	team	a	different	part	to	work	on	during	sprints,	since	things	can	be	worked	on	
in	parallel.	

	

3.7	OTHER	RESOURCE	REQUIREMENTS	

When	training	the	machine	learning	model	on	the	annotated	articles,	we	may	require	a	GPU	
cluster	to	get	a	quicker	and	more	efficient	way	of	training	that	a	normal	computer	would	not	be	
able	to	give	us.	

4		Design	

4.1	DESIGN	CONTEXT	

4.1.1	Broader	Context	

Our	project	is	primary	focused	on	two	communities:	security	researchers	in	academia	and	
information	security	roles	in	industry.	Although	these	communities	will	be	directly	affected	by	our	
project,	the	entire	world	will	be	indirectly	affected	as	well.	The	increased	efficiency	of	gathering	
cybersecurity	knowledge	will	allow	our	target	communities	to	better	do	their	job	and,	increasing	
safety,	security,	privacy,	and	integrity	in	all	software	applications.	As	societies	around	the	world	
grow	more	dependent	on	technology,	our	goal	is	to	make	the	software	they	interact	with	safer.	

Area	 Considerations	

Public	health,	
safety,	and	
welfare	

All	users	of	a	technology	companies'	products	are	indirectly	affected	by	our	
project	due	to	the	utility	we	provide	information	security	staff.	Helping	these	
roles	increases	the	public	safety	and	welfare	in	their	interaction	with	
technology.	It	could	also	harm	job	opportunities	of	these	positions,	as	an	
effective	product	would	require	less	staff	to	research	and	fix	problems.	

In	the	same	way,	researchers’	use	of	our	product	will	also	improve	the	general	
populations’	interaction	with	technology	utilizing	their	discoveries.	

Global,	
cultural,	and	
social	

Our	project	accurately	reflects	the	values	of	our	target	cultural	groups	
including	security	researchers	in	academia	and	information	security	staff	in	
industry.	Using	extracted	information	to	build	a	knowledge	graph	that	can	be	
queried	is	in	line	with	practices	to	streamline	cybersecurity	information	
gathering.	

Environmental		 The	environmental	effects	of	this	project	are	indirect.	The	software	will	be	
executed	and	hosted	on	servers	that	use	a	lot	of	electricity	of	unknown	origin	
(renewable	vs.	nonrenewable).	

	 	 	

	

	

There	is	a	potential	impact	of	training	ML	models	with	GPU	clusters	in	terms	
of	energy	usage,	although	our	project	would	have	to	scale	magnitudes	larger	
for	this	to	become	a	reasonable	concern.	

Economic	 This	project	being	successful	will	have	an	impact	of	increased	productivity	by	
information	security	roles	in	industry	by	getting	them	access	to	recent,	
condensed,	and	relevant	information	quicker.		

One	pending	consideration	is	if	the	project	proves	extremely	useful	what	
obligation	we	have	to	make	it	available	to	good	actors	in	terms	of	cost.	

	

4.1.2	Prior	Work/Solutions	

There	have	been	research	papers	on	the	idea	of	using	Knowledge	Graphs	to	store	information	in	the	
Cyber	Security	domain.	One	example	is	“TINKER:	A	framework	for	Open	source	Cyberthreat	
Intelligence”.	This	research	paper	delves	into	creating	a	knowledge	graph	that	is	used	primarily	to	
“infer	threat	information	from	the	[cybersecurity]	text	corpus”.	This	differs	from	our	project	in	that	
it	attempts	to	strictly	capture	malware	information	from	CTIs	(Cyber	Threat	Intelligence).	Our	
project	is	aimed	more	for	researchers	and	industry	professionals	to	be	able	to	query	a	knowledge	
graph	of	many	entity-types	(companies,	vulnerably,	malware)	that	is	consistently	updating	with	
new	information	automatically.	

Some	of	the	pros	and	cons	of	our	target	solution	would	be:	

1. Pro:	Web	Interface	with	query	input	and	data	visualization	
2. Pro:	Updating	periodically	(e.g.,	every	hour)	with	new	cybersecurity	information	
3. Con:	Information	sourced	from	reputable	cybersecurity	blogs	instead	of	CTIs.	

Our	project	is	not	following	previous	work	of	any	Senior	Design	project.	

	

4.1.3	Technical	Complexity	

The	design	includes	several	components	stored	in	Docker	containers	that	collaborate	to	scrape	
website	articles	and	construct	the	knowledge	graph.	These	components	include:	

1. Web	scraper	and	parser:	uses	frameworks	to	make	a	request	for	pages	in	the	source	list	and	
get	the	raw	HTML.	Then	uses	programming	organization	principles	to	find	and	extract	the	
useful	information	from	the	document.	This	requires	structural	knowledge	of	web	pages	
and	analysis	of	how	to	clean	the	pages	into	useable	data	for	the	following	step.	

2. Taxonomy	definition	and	training	Name-Entity	Recognition	Model:	using	the	NLTK	and	
spacy	libraries	with	Python	along	with	our	taxonomy	definitions	to	perform	natural	
language	processing	(NPL)	and	queries	on	the	data.	This	requires	scientific	and	
mathematical	knowledge	of	language	processing	and	article	tagging	to	create	relationships	
for	the	graph.	

	 	 	

	

	

3. Relationship	extraction	to	construct	the	graph	and	store	in	a	database:	Using	the	
relationship	data	created	above,	use	computer	science	principles	to	build	a	knowledge	
graph	that	has	meaningful	relationships	between	the	nodes	and	is	in	a	readable	format.	

4. Running	natural	language	queries	on	the	completed	knowledge	graph:	requires	computer	
science	and	mathematical	principles	regarding	AI	and	language	comprehension	that	can	
query	the	graph	with	a	search	term	and	return	meaningful	results.	

5. Displaying	knowledge	graph	and	queries	on	frontend	for	consumption:	Includes	web	
programming	principles	and	standards	to	host	a	page	in	the	browser	that	can	render	the	
graph	and	provide	a	search	feature	for	the	natural	language	queries.	Will	need	to	efficiently	
display	the	results	and	scale	based	on	the	graph	or	query	size.	

	

4.2	DESIGN	EXPLORATION	

4.2.1	Design	Decisions	

1. Potential	Sources:	The	biggest	decision	in	terms	of	potential	sources	we	ran	into	were	
whether	to	include	blogs	as	a	source	in	our	project	as	many	cyber	security	professionals	
don’t	have	or	never	needed	to	obtain	a	college	degree	so	the	information,	they	put	out	isn’t	
in	a	well-structured	or	well-defined	manner.	Excluding	these	sources	could	be	a	problem	
later	in	the	project	because	these	cyber	security	blogs	are	rich	with	information.	

2. Cleanup:	The	cleanup	of	the	text	from	sources	is	for	training	our	Name-Entity	Recognition	
Model	which	is	a	crucial	part	of	our	project.	This	decision	is	important	because	we	need	a	
well-formatted	text	to	train	the	NER.	Avoiding	the	best	decision	for	our	cleanup	process	
would	be	detrimental	to	training	the	NER.	

3. Taxonomy	Definitions:	Taxonomy	is	important	in	determining	the	scope	of	the	project	and	
which	topics	we	should	cover	in	the	knowledge	graph.	We	plan	on	utilizing	the	broader	
topics	such	as	Vulnerabilities,	Malware,	and	breaches	but	the	decision	comes	down	to	
including	some	of	the	smaller	topics	into	our	taxonomy	like	threat	actors	and	phishing.		

	 	 	

	

	

4.2.2	Ideation	

	

For	cleaning	up	documents	to	remove	irrelevant	information	after	they’ve	been	scraped	and	parsed,	
we	considered	several	different	options	using	the	lotus	blossom	method	for	ideation.		

• Guess	and	Check	–	Repeatedly	attempt	to	clean	up	the	document	until	the	output	meets	
certain	criteria	or	is	within	certain	parameters.	

• Manual	Annotation	–	Clean	up	a	small	set	of	documents	by	hand	and	then	use	that	sample	
data	to	train	a	machine	learning	model	to	clean	up	documents.	

• Find	sources	with	no	irrelevant	data	–	Get	information	from	sources	that	are	known	to	only	
contain	relevant	information,	or	are	in	a	structured	format	(e.g.,	JSON,	XML,	etc.)	which	
can	be	queried	for	relevant	information	in	a	standard	way.	

• Do	all	cleanup	by	hand	–	Manually	clean	up	all	new	articles	every	time	one	is	added	for	as	
long	as	the	project	is	running.	Not	a	realistic	solution.	

• Define	parameters	for	an	algorithm	–	Figure	out	how	to	clean	up	each	source	and	write	a	
program	to	do	it	automatically.	Program	may	need	to	be	rewritten	when	sources	change	
website	design.	

• Don’t	do	it	–	Output	all	data,	even	if	it	is	irrelevant.	The	easiest	“solution”	to	this	problem,	
but	may	make	later	steps	in	the	process	more	difficult	since	we	have	to	work	around	all	of	
the	noise.	

	 	 	

	

	

	

4.2.3	Decision-Making	and	Trade-Off	

	

For	deciding	which	data	cleanup	method	to	use,	we	made	the	table	above.	The	different	methods	
added	to	a	weighted	decision	matrix.	We	chose	four	main	factors:	accuracy,	development	time,	
development	complexity	and	run	time.	Accuracy	represents	how	accurate	we	predict	the	method	to	
be.	A	lower	number	indicates	that	the	method	might	have	a	high	chance	of	improperly	cleaning	the	
data,	leaving	mistakes	and	invalid	data.	Accuracy	was	chosen	as	the	most	important	factor,	as	good	
data	is	important	for	building	machine-learning	algorithms.	Next,	was	development	time,	which	
represents	how	long	it	will	take	to	implement	the	cleanup	method.	A	lower	number	indicates	that	
it	will	take	a	longer	time	to	implement.	Next	is	development	complexity,	representing	how	difficult	
the	method	is	to	develop	or	use.	Lastly,	is	run	time,	which	represents	how	long	the	cleanup	method	
will	run	when	cleaning	up	data.	

4.3 PROPOSED	DESIGN	

4.3.1	Overview	

Our	current	design	includes	multiple	software	components,	each	with	a	roll	to	play	to	achieve	our	
overall	goal.	One	component	is	responsible	for	collecting	data	from	external	sources,	another	for	
extracting	subjects	and	relationships	between	them	from	that	data,	and	another	for	saving	this	
information	in	a	graph.	This	design	works	as	a	pipeline	to	start	with	raw	text	information	and	end	
up	with	a	graph	that	can	be	queried	for	information.	One	last	component	is	a	frontend	that	users	
can	use	to	perform	the	queries.	

	 	 	

	

	

	

4.3.2	Detailed	Design	and	Visual(s)	

4.3.2.1	Scraper	

The	scraper	is	a	Python	module	responsible	for	inputting	a	list	of	sources	and	outputting	text	files.	
The	source	list	input	should	be	in	JSON	format	and	be	an	array	of	objects,	each	with	a	“url”	
property	that	points	to	the	URL	of	the	main	feed.	Each	output	text	file	should	be	the	text	from	an	
article	not	yet	scraped	from	the	inputted	source	list.	Scraping	should	be	done	using	the	Python	
library	Scrapy,	and	extraction	of	the	scraped	text	should	be	done	using	the	Python	library	
BeautifulSoup.	The	next	subcomponent	of	the	scraper	is	the	“Cleanup”.	The	input	will	be	the	
extracted	text	and	the	output	will	be	text	without	irrelevant	information.	This	will	require	little	or	
much	effort	depending	on	the	source	and	thus	should	be	examined	on	a	source-by-source	basis.	
The	last	subcomponent	of	the	scraper	is	a	database	to	store	information	including	the	URL	fetched,	
the	article	text,	and	a	timestamp	of	when	it	was	collected.	

	

4.3.2.2	Parser	

The	parser	is	a	Python	module	that	takes	input	from	the	scraper	(text	files)	and	performs	Named-
Entity-Recognition	(NER)	and	Relationship	Extraction	(RE).	These	two	jobs	allow	for	the	creation	
of	a	graph	structure	with	Named	Entities	as	the	vertices	and	relationships	as	the	edges.	The	output	
of	this	component	are	entities	and	relationships	for	the	knowledge	graph.	

The	NER	subcomponent	will	extract	the	following	types	of	entities	from	text:	

- Organization	

	 	 	

	

	

- Vulnerability	-	CVEs	or	named/known	exploits	
- Threat	Group	-	Known	malicious	groups	
- Malware	Type	-	Virus',	Trojans,	Ransomware,	etc.	
- System	-	OS’s,	Hardware,	Software	
- Protocol,	with	the	version	if	applicable	

The	RE	subcomponent	will	extract	the	following	relationships	between	entities:	

- manages	
o Organization	->	System	

- attackVector	
o Vulnerability	->	System	

- used	
o System,	Protocol,	Filetype,	Filename	->	Organization,	Threat	Group,	System	
o Port	->	Protocol,	System	
o Vulnerability,	URL,	IP	->	Threat	Group,	Malware	Name	

- attacked		
o Threat	Group	->	Organization	

- exploits	
o Vulnerability	->	Protocol	

- isType		
o Vulnerability	->	Malware	Type	

	

The	parser	currently	has	a	couple	of	defined	interfaces.	They	are	as	follows:	

- AbstractInput	
o Description:	Reads	input	from	implementation-dependent	source	(MongoDB,	file,	

hardcoded,	etc.)	
o Methods:	

§ get_inputs()	->	list[str]	
- AbstractParser	

o Description:	Performs	IE	(NER	+	RE)	on	input	and	outputs	entities	and	
relationships	

o Methods:	
§ parse(input:	str)	->	ParserResult	

- AbstractOutput	
o Description:	Outputs	entities	and	relationships	in	an	implementation-dependent	

way	(file,	database,	etc.)	
o Methods:	

§ output(result:	ParserResult)	->	bool	
- ParserResult	

o entities:	list[str]	

	 	 	

	

	

o relationships:	list[ParserRelationship]	
- ParserRelationship	

o from:	str	
o to:	str	
o type:	str	

	

4.3.2.3	Knowledge	Graph	

The	Knowledge	Graph	component	will	accept	entities	and	relationships	as	input	and	store	these	
into	a	graph	database.	Our	current	choice	for	the	database	is	Neo4j	as	it	offers	good	performance,	
no	cost,	and	is	graph	based.	The	entities	will	be	stored	as	vertices	in	the	graph	(called	Nodes	in	
Neo4j)	and	relationships	between	entities	will	be	stored	as	edges	in	the	graph	(called	
“relationships”	in	Neo4j).	This	should	be	running	in	a	Docker	container	but	have	an	exposed	API	
that	the	Parser	is	able	to	use	to	insert	these	entities	and	relationships.	It	should	also	expose	an	API	
to	perform	queries	on	the	graph,	such	as	getting	all	nodes	related	to	a	node	by	some	relationship.	

	

4.3.2.4	Frontend	

The	frontend	of	our	project	will	be	a	React	web	application	written	in	TypeScript.	The	web	app	will	
accept	user	input	specifying	what	information	should	be	queried	and	will	perform	an	API	request	
on	the	Knowledge	Graph.	An	example	could	be	a	cybersecurity	researching	searching	for	
“Samsung”	and	getting	back	all	or	a	limited	set	of	nodes	connected	to	it,	such	as	recent	attacks	
launched	against	them.	It	should	then	display	the	result	in	a	graph	or	tree	format.	

	 	 	

	

	

	

Figure:	Frontend	Mockup	

	

4.3.3	Functionality	

Our	design	is	intended	to	operate	by	the	user	visiting	a	web	application.	The	user	will	enter	in	a	
query,	such	as	a	company,	vulnerability,	and/or	timeframe	they	are	searching	for,	and	the	
Knowledge	Graph	will	be	queried	with	those	parameters.	The	user	will	be	able	to	navigate	around	
the	Knowledge	Graph	by	dragging	the	mouse	in	different	directions	to	explore	the	connections	
between	nodes.	The	user	may	also	choose	to	have	their	results	displayed	in	a	Tree	View	rather	than	
a	Graph	View.	

If	the	user	enters	in	a	query	for	which	there	are	no	results,	they	will	be	prompted	that	no	results	
exist.	In	the	case	of	an	error	in	the	query,	the	user	will	be	prompted	that	their	query	was	completed	
unsuccessfully	along	with	any	additional	error	information	from	the	server.	

Periodically	the	pipeline	will	run	again,	scraping	new	articles,	parsing	them,	and	inserted	the	
extracted	information	into	the	knowledge	graph.	The	interval	is	currently	defined	as	1	hour,	
although	this	is	subject	to	change.		

4.3.4	Areas	of	Concern	and	Development	

The	current	design	completely	satisfies	the	client	requirements	and	moderately	meets	the	expected	
needs	of	our	users.	The	area	of	most	concern	will	be	the	development	of	the	Named-Entity-
Recognition	model	and	performing	Relation	Extraction	due	mostly	to	many	unknowns	we	have	yet	

	 	 	

	

	

to	encounter.	Performing	NER	and	RE	is	on	track	to	be	the	most	complex	portion	of	the	project.	
The	immediate	plan	for	developing	the	solution	to	this	component	is	beginning	testing	whether	we	
need	to	train	our	own	models	to	perform	these	steps	or	if	we	may	take	advantage	of	existing	
technologies	such	as	CyNER.	If	we	can	use	a	previously	trained	model	for	the	NER	step,	this	would	
drastically	decrease	the	level	of	effort	needed	for	a	successful	Parser	component.	We	currently	have	
no	questions,	as	our	client	and	faculty	adviser	has	graciously	provided	us	with	scientific	papers	
going	into	details	about	different	attempts	at	Cybersecurity	Knowledge	Graphs	and	some	
Information	Extraction	on	a	text	corpus.	

4.4	TECHNOLOGY	CONSIDERATIONS	

Scraping	–	scrapy	

For	scraping	we	chose	the	scrapy	library.	It	is	one	of	the	most	popular	Python	web-crawling	
frameworks.	It	features	a	wide	variety	of	inbuilt	tools	to	help	us	collect	the	data	we	need.	
Ultimately,	we	chose	it	because	of	the	rich	community	and	how	widespread	the	framework	is.		

One	of	the	weaknesses	of	scrapy	is	how	basic	its	parsing	tools	are.	Scrapy	is	great	for	collecting	data	
from	websites,	but	not	the	best	at	parsing	that	data.	A	solution,	which	we	are	implementing	is	to	
use	another	framework	to	parse	the	data.	We	chose	BeautifulSoup4	due	to	its	rich	feature	set,	some	
team	member’s	prior	knowledge	and	its	widespread	usage.	

NER	–	spacy	

Spacy	will	be	a	great	library	to	assist	with	NER	and/or	RE	due	to	the	good	support	available	and	
that	some	team	members	and	our	advisor	have	some	background	in	this	framework.	There	exist	
other	options	such	as	the	NLTK,	and	cloud	offerings.	We	did	not	want	to	use	a	proprietary	
framework	like	the	Google	Cloud	Natural	Language	API	to	keep	our	project	open	source	and	free.	

NLTK	is	more	academic	focused	that	spacy.	It	is	meant	to	be	a	toolbox	of	machine	learning	tools	
for	academic	use,	while	spacy	is	more	oriented	towards	developers.	Spacy	has	a	richer	set	of	tools	to	
help	us	accomplish	our	goal	faster	and	more	efficiently.	NLTK	focuses	just	on	strings,	while	Spacy	
focuses	on	objects.	Most	of	our	data	is	objects,	so	spacy	was	the	better	fit.	

Database	–	SQL	(column	based)	vs	Neo4j	(graph	based)	

The	decision	to	use	a	graph-based	database	was	a	very	easy	decision.	We	are	building	a	graph,	so	a	
graph-based	database	fits	our	data	type.	Graph-based	databases	use	more	memory	and	are	harder	
to	do	text	queries	on,	but	store	trees	and	graph	data	more	efficiently	than	a	column-based	
database.		

Furthermore,	a	graph-based	database	allows	storing	arbitrary	data.	A	column-base	database	
requires	data	to	be	in	a	very	rigid	format	–	data	must	fit	into	the	specified	columns.	A	lot	of	our	
data	is	wildly	different,	with	types	such	as	vulnerabilities,	software	packages	and	malware.	This	
variance	makes	storing	data	in	columns	difficult	and	unscalable.	

Web	technologies	&	NLP	stretch	goal	

Our	project	will	make	use	of	TypeScript	and	the	React	library.	We	came	to	this	decision	over	other	
web	development	frameworks	because	of	a	large	ecosystem	of	packages,	previous	experience	of	

	 	 	

	

	

team	members,	and	the	easy-of-use	of	performing	API	calls	and	displaying	the	data	in	an	aesthetic	
way.	Other	considerations	were	made	such	as	Angular,	Vue,	or	simply	HTML/CSS/JS.	Ultimately	
because	of	the	previously	described	reasons,	React	won	as	the	library	of	choice.	

4.5	DESIGN	ANALYSIS		

Scraper:		

• Implemented	basic	scraping	and	parsing	functionality,	scraper	reads	input	of	sources	in	a	
JSON	document	and	outputs	the	parsed	HTML	document	for	each	source.	

• Integrated	the	BeautifulSoup4	parses	in	with	the	Scrapy	spider.	Now	instead	of	raw	HTML	
data,	it	is	being	cleaned	up	to	a	more	readable	format	which	will	make	storing	in	a	
database	or	running	language	processing	on	the	data	much	easier.		

Docker	Container	and	GitHub:	

• Constructed	new	folder	setup	in	GitHub	that	allows	each	folder	to	be	a	Docker	container.	
• Used	Docker	Compose	to	organize	and	build	each	container.	
• The	scraper	and	MongoDB	database	that	was	constructed	to	store	article	information	will	

each	be	a	separate	container.		

Article	Tagging:	

• Began	using	the	NER	Annotator	tool	available	online	to	create	a	model	which	can	be	used	
by	the	spacy	tool	to	process	the	article	information.	

So	far	during	the	implementation	of	the	items	above,	the	proposed	design	has	functioned	well	in	
organizing	and	linking	the	different	components	together.	The	scraper	and	the	parser	are	currently	
being	worked	on	however	the	other	sections	of	the	proposed	design	have	not	been	started	yet	so	an	
analysis	of	how	they	are	working	is	not	possible.	For	future	design,	the	article	tagging	will	continue	
after	more	information	is	scraped	and	stored	in	the	database.	Then	the	created	model	from	NER	
tagging	will	be	used	to	parse	the	article	data	and	identify	information	to	build	the	knowledge	graph	

5		Testing		
Our	project	will	make	use	of	many	types	of	testing	to	test	the	various	software	components	and	
subcomponents.	For	each	of	our	components,	our	goal	is	to	have	at	least	75%	code	coverage	and	
100%	of	tests	pass.	Each	component	is	responsible	for	containing	unit,	integration,	and	system	tests	
that	verify	its	behavior	internally,	while	additional	integration	and	system	tests	will	be	outside	of	
these	components	to	test	their	interaction.		

When	changes	are	made	in	one	component,	it	will	be	required	to	run	all	tests	in	that	component	in	
addition	to	all	integration	and	system	tests.	New	tests	should	be	added	to	verify	the	behavior	of	
newly	added	logic.	Our	main	instruments	for	testing	will	be	the	Python	testing	framework	unittest	
for	our	components	written	in	Python	and	the	testing	framework	jest	for	our	website	component	
written	in	TypeScript.	This	will	work	to	run	unit	tests	on	individual	components	and	integration	
and	system	tests	across	components.	

The	team’s	overall	testing	philosophy	is	to	test	early,	test	often,	and	use	it	as	a	tool.	Testing	can	be	a	
wonderful	tool	in	a	Test-Driven	Development	(TDD)	framework	because	expected	inputs	and	

	 	 	

	

	

outputs	can	be	specified	first,	then	the	tests’	results	indicate	to	the	developer	whether	they’ve	
implemented	the	desired	functionality.	

5.1	UNIT	TESTING	

Scraper	

The	scraper	tests	and	code	coverage	should	be	run	after	every	commit	to	ensure	no	breaking	
changes	have	been	made.	The	testing	plan	is	as	follows:	

1. Open	terminal	
2. Change	directory	to	`scraper`	
3. Run	`make	coverage`	command	
4. Verify	no	failures	in	tests	

a. If	all	tests	pass,	the	text	“OK”	will	show	at	the	bottom	of	the	output.	
b. If	one	or	more	tests	fail,	the	bottom	of	the	output	will	read	“FAILED”	with	the	

number	of	failures	in	parenthesis	(e.g.,	“FAILED	(failures=1)”)	
5. Open	generated	coverage	file	`htmlcov/index.html`	
6. Ensure	test	coverage	is	greater	than	or	equal	to	75%.	

	

Parser	

The	parser	tests	and	code	coverage	should	be	run	after	every	commit	to	ensure	no	breaking	
changes	have	been	made.	The	testing	plan	is	as	follows:	

1. Open	terminal	
2. Change	directory	to	`parser`	
3. Run	`make	coverage`	command	
4. Verify	no	failures	in	tests	

a. If	all	tests	pass,	the	text	“OK”	will	show	at	the	bottom	of	the	output.	
b. If	one	or	more	tests	fail,	the	bottom	of	the	output	will	read	“FAILED”	with	the	

number	of	failures	in	parenthesis	(e.g.,	“FAILED	(failures=1)”)	
5. Open	generated	coverage	file	`htmlcov/index.html`	
6. Ensure	test	coverage	is	greater	than	or	equal	to	75%.	

	

Website	

The	tests	and	code	coverage	for	the	website	component	should	be	run	after	every	commit	to	ensure	
no	breaking	changes	have	been	made.	The	testing	plan	is	as	follows:	

1. Open terminal
2. Change directory to `frontend`
3. Run `yarn test` command
4. Verify no test failures
5. Open generated coverage file `htmlcov/index.html`	
6. Ensure test coverage is greater than or equal to 75%.

	

5.2	INTERFACE	TESTING	

Our	interfaces	include	the	source	list	for	the	scraper,	the	entity-relationship	output	from	the	
parser,	and	the	graph	API	queried	by	the	frontend	to	be	rendered.	To	test	these	interfaces,	we	have	
tests	in	place	that	send	data	through	the	interface	and	verify	its	integrity.	In	addition,	the	parser	

	 	 	

	

	

entity-relationship	output	can	be	tested	by	inputting	mock	article	data	and	ensuring	the	parser	
output	is	as	expected.	For	most	of	our	existing	and	future	tests	we	use	the	Python	testing	library	
such	as	unit	test	or	mocking	tools	in	a	test	class	that	asserts	the	scraper	and	parser	are	functioning	
properly.	The	graph	API	is	provided	by	Neo4j	and	thus	isn’t	tested	in	our	project,	although	any	
bindings	that	we	write	for	this	API	will	be.	

	

5.3 INTEGRATION	TESTING	

The	critical	integration	paths	in	our	project	begin	with	the	human-developed	source	list	being	
handled	correctly	by	the	scraper.	The	next	is	the	scraper	properly	storing	article	information	in	the	
MongoDB	database.	Then	after	this	is	completed,	the	parser	retrieves	the	MongoDB	data	and	
constructs	the	list	of	entities	and	relationships.	Lastly	this	entity-relationship	data	is	stored	in	the	
Neo4J	graph	database	and	then	queried	by	the	frontend	for	rendering.	All	the	above	paths	are	
essential	to	the	project	operating	correctly	and	can	be	tested	by	using	Docker	Compose	to	build	
and	run	all	the	containers	on	a	local	or	cloud	server,	then	use	a	script	or	library	to	verify	the	
container	are	communicating	properly	with	data	expected	by	that	test	case.	

	

5.4 SYSTEM	TESTING	

By	using	source	lists	with	inputs	for	which	the	expected	outputs	are	known	we	can	test	that	the	
output	of	our	system	falls	within	our	defined	parameters.	Our	first	step	to	test	output	we	will	use	
portions	of	documents	we	annotated	manually	to	ensure	the	machine	learning	program	is	
outputting	what	we	expect	it	to	and	compare	it	to	the	accuracy	requirements	of	the	annotation.	As	
the	machine	learning	portion	gets	fed	more	documents	and	learns	how	to	annotate	with	more	
accuracy,	we	will	begin	to	give	it	larger	portions	of	a	document	until	it	can	annotate	a	full	
document	within	the	accuracy	percentage	requirement	we	defined.	Once	this	point	has	been	
reached,	we	will	begin	to	give	it	full	documents	until	the	machine	learning	has	been	refined	enough	
to	where	it	is	no	longer	required	for	us	to	test	each	output	for	accuracy.	Our	system	testing	will	use	
all	the	tools	mentioned	in	the	unit,	interface,	and	integration	test	sections	to	test	the	whole	system,	
as	each	section	needs	to	perform	to	our	standards	for	the	whole	program	to	perform	well.	If	one	
piece	is	not	working	up	to	standards,	the	output	may	contain	unexpected	behavior.	

	

5.5 REGRESSION	TESTING	

Our	strategy	to	implement	Regression	Testing	is	supported	by	two	rules:	Have	a	separate,	clean,	
working	copy	of	the	code	on	our	main	branch	and	run	unit,	integration,	and	system	tests	on	every	
pull	request	to	this	branch.	The	pull	request	is	not	able	to	be	merged	until	all	tests	are	passing.	This	
will	ensure	existing	functionality	has	not	been	broken,	plus	having	the	main	branch	be	a	clean	
working	copy	allows	us	to	rollback	changes	that	break	existing	functionality.	Critical	features	that	
our	project	needs	to	ensure	do	not	break	are	the	scraper	fetching	sources	and	the	parser	processing	
these	sources	and	outputting	expected	entities	and	relationships.	

	

	 	 	

	

	

5.6 ACCEPTANCE	TESTING	
Acceptance	testing	of	our	functional	requirements	will	be	performed	by	running	unit,	integration,	
and	system	tests	to	provide	verifiable	evidence	that	our	test	cases	are	passing.	Most	of	our	project’s	
non-functional	requirements	can	be	summed	up	as	a	satisfactory	level	of	code	quality,	libraries	
being	open-source	and	a	license	allowing	free	usage,	and	documentation	of	code.	These	non-
functional	requirements	can	be	verified	by	reviewers	of	pull	requests.	For	example,	if	a	new	library	
is	added	as	a	dependency,	the	reviewer	should	be	double	checking	the	license	allows	us	to	use	it.	
Our	client	will	be	involved	in	acceptance	testing	by	being	made	available	the	number	of	passed	
tests	and	code	coverage,	ensuring	we’ve	met	the	expectations	set	in	the	requirements	and	
metrics/evaluation	criteria.	They	will	also	be	delivered	our	iterative	beta	builds	after	each	sprint	to	
evaluate	our	progress	and	correctness	in	our	design	implementation.	

	

5.7 SECURITY	TESTING	

Security	Testing	will	consist	of	testing	that	malicious	queries	from	the	frontend	website	are	not	
able	to	perform	any	sort	of	remote	code	execution	(RCE)	on	the	backend	database.	To	ensure	this	
doesn’t	happen,	all	inputs	from	the	user	need	to	be	sanitized.	Testing	plans	for	security	testing	
include	performing	various	types	of	penetration	testing	on	the	frontend,	including	NOSQL	
injection	and	cross-site	scripting,	by	performing	queries	with	malformed	input	to	execute	malicious	
code	on	the	server	or	in	the	user’s	browser.	

	

5.8 RESULTS	

The	unit	testing	on	the	scraper	had	two	testing	requirements	associated	with	it.	All	tests	(100%)	
had	to	pass,	and	the	test	coverage	of	scraper	Python	source	code	had	to	be	at	least	75%.	Our	unit	
testing	successfully	achieved	those	goals;	all	unit	tests	passed,	and	the	coverage	is	76%.	This	was	
able	to	show	that	the	scraper	is	working	exactly	as	intended	taking	input	from	the	source	list	and	
outputting	the	article	data.	The	following	figure	shows	an	output	of	test	coverage	in	our	current	
implementation	of	the	scraper.	Note	the	total	coverage	is	shown	at	the	top.	

	

	 	 	

	

	

The	scraper	testing	serves	as	a	proof	of	concept	for	each	component	containing	unit,	integration,	
and	system	tests.	Future	work	includes	creating	tests	for	the	other	components,	and	then	
integration	and	system	tests	between	components.	All	the	testing	described	in	this	section	will	
ensure	that	our	implementation	matches	both	our	chosen	design	and	verify	our	requirements	are	
being	met.	

6		Implementation	
During	the	Fall	2022	semester,	our	team	accomplished	implementing	the	scraper	component	of	our	
system.	The	scraper	accepts	a	source	list	as	input	(including	the	URL's	and	parsers	that	should	be	
used	to	extract	the	article	text),	creates	the	spider	necessary	to	perform	the	web	crawling,	and	then	
stores	the	article	along	with	other	metadata	in	a	MongoDB	database.	

	

Our	preliminary	implementation	plan	for	next	semester	is	to	begin	development	of	the	parser	by	
initially	creating	multiple	implementations	of	our	parser	interface	with	different	NER	models.	We	
will	test	these	different	libraries	and	see	if	there	are	any	functionalities	to	gain	from	them	or	if	we	
need	to	build	our	own	model.	We	will	know	relatively	quickly	whether	we	need	to	train	our	own	
model,	in	which	case	we	will	use	self-annotated	articles	and	machine	learning	to	generate	it.	The	
graph	database	and	frontend	of	the	project	will	be	developed	in	parallel	with	the	parser.	For	the	
frontend,	a	prototype	in	Figma	will	be	developed	first,	and	then	the	final	product	will	be	created.	

7		Professional	Responsibility	
This	discussion	is	with	respect	to	the	paper	titled	“Contextualizing	Professionalism	in	Capstone	
Projects	Using	the	IDEALS	Professional	Responsibility	Assessment”,	International	Journal	of	
Engineering	Education	Vol.	28,	No.	2,	pp.	416–424,	2012	
Area	of	
responsibility	

Definition	 NSPE	Canon	

Work	
Competence		

Perform	work	of	high	quality,	
integrity,	timeliness,	and	
professional	competence.	

Perform	services	only	in	areas	of	their	
competence;	Avoid	deceptive	acts.		

Financial	
Responsibility		

Deliver	products	and	services	of	
realizable	value	and	at	reasonable	
costs.	

Act	for	each	employer	or	client	as	faithful	
agents	or	trustees.		

Communication	
Honesty	

Report	work	truthfully,	without	
deception,	and	understandable	to	
stakeholders.	

Issue	public	statements	only	in	an	
objective	and	truthful	manner;	Avoid	
deceptive	acts.		

Health,	Safety,	
Well-Being		

Minimize	risks	to	safety,	health,	
and	well-being	of	stakeholders.	

Hold	paramount	the	safety,	health,	and	
welfare	of	the	public.	

Property	
Ownership	

Respect	property,	ideas,	and	
information	of	clients	and	others.	

Act	for	each	employer	or	client	as	faithful	
agents	or	trustees.		

Sustainability	 Protect	environment	and	natural	
resources	locally	and	globally.	

	

Social	
Responsibility	

Produce	products	and	services	
that	benefit	society	and	
communities.	

Conduct	themselves	honorably,	
responsibly,	ethically,	and	lawfully	so	as	to	
enhance	the	honor,	reputation,	and	
usefulness	of	the	profession.		

	 	 	

	

	

	

7.1 AREAS	OF	RESPONSIBILITY	
Area	of	
responsibility	

Definition	 NSPE	Canon	 IEEE	

Work	
Competence		

Perform	work	of	high	
quality,	integrity,	
timeliness,	and	
professional	
competence.	

Perform	services	only	in	
areas	of	their	
competence;	Avoid	
deceptive	acts.		

Maintain	and	improve	
our	technical	
competence	and	to	
undertake	
technological	tasks	
for	others	only	if	
qualified	by	training	
or	experience,	or	after	
full	disclosure	of	
pertinent	limitations;	

Financial	
Responsibility		

Deliver	products	and	
services	of	realizable	
value	and	at	reasonable	
costs.	

Act	for	each	employer	or	
client	as	faithful	agents	
or	trustees.		

	

Communicatio
n	Honesty	

Report	work	truthfully,	
without	deception,	and	
understandable	to	
stakeholders.	

Issue	public	statements	
only	in	an	objective	and	
truthful	manner;	Avoid	
deceptive	acts.		

Seek,	accept,	and	offer	
honest	criticism	of	
technical	work,	to	
acknowledge	and	
correct	errors,	to	be	
honest	and	realistic	in	
stating	claims	or	
estimates	based	on	
available	data.	

Health,	Safety,	
Well-Being		

Minimize	risks	to	safety,	
health,	and	well-being	of	
stakeholders.	

Hold	paramount	the	
safety,	health,	and	
welfare	of	the	public.	

Hold	paramount	the	
safety,	health,	and	
welfare	of	the	public.	
Disclose	promptly	
factors	that	might	
endanger	the	public	
or	the	environment;	

Property	
Ownership	

Respect	property,	ideas,	
and	information	of	
clients	and	others.	

Act	for	each	employer	or	
client	as	faithful	agents	
or	trustees.		

Avoid	injuring	others,	
their	property,	
reputation,	or	
employment	by	false	
or	malicious	actions,	
rumors	or	any	other	
verbal	or	physical	
abuses;	

Sustainability	 Protect	environment	and	
natural	resources	locally	
and	globally.	

	 Strive	to	comply	with	
ethical	design	and	
sustainable	

	 	 	

	

	

development	
practices.	

Social	
Responsibility	

Produce	products	and	
services	that	benefit	
society	and	
communities.	

Conduct	themselves	
honorably,	responsibly,	
ethically,	and	lawfully	so	
as	to	enhance	the	honor,	
reputation,	and	
usefulness	of	the	
profession.		

Improve	the	
understanding	by	
individuals	and	
society	of	the	
capabilities	and	
societal	implications	
of	conventional	and	
emerging	
technologies.	

	

Difference	between	NSPE	Canon	and	IEEE	definitions:	

Work	Competence:	Work	to	remain	knowledgeable	and	grow/learn.	Do	not	perform	tasks	unless	
confident	in	qualifications	or	communication	with	superior	about	honest	level	of	skill.	The	NSPE	
and	IEEE	differ	when	the	IEEE	states	to	maintain	and	improve	technical	competence,	while	NSPE	
only	makes	mention	of	doing	work	you’re	qualified	to	do.	

Financial	Responsibility:	NSPE	and	IEEE	definitions	differ	in	that	IEEE	does	not	address	
Financial	Responsibility.	

Communication	Honesty:	Accept	and	contribute	meaningful	and	honest	criticism	of	work	
performed,	including	potential	errors	and	pitfalls.	NSPE	and	IEEE	differ	in	that	IEEE	addresses	
engineers	honestly	address	each	other	about	potential	errors	in	technical	work.	

Health,	Safety,	Well-Being:	When	made	aware	of	issues	that	could	cause	harm	to	health,	safety,	
or	well-being	of	the	public,	vocalize	these	issues	to	the	proper	authority.	NSPE	and	IEEE	use	the	
exact	same	first	sentence.	One	difference	is	IEEE	mentions	specifically	mentions	what	holding	the	
safety,	health,	and	welfare	paramount	looks	like.	

Property	Ownership:	Do	not	use	misinformation	or	lies	to	negatively	impact	others,	both	
physically	and	verbally.	NSPE	and	IEEE	differ	in	that	IEEE	explicitly	states	to	avoid	damaging	
property	and	respecting	its	ownership.	

Sustainability:	In	contrast	to	NSPE,	IEEE	has	an	entry	for	the	sustainability	professional	
responsibility.	In	a	nutshell,	it	says	to	perform	technical	work	in	a	way	that	isn’t	harmful	to	the	
environment	and	can	be	performed	sustainably.	

Social	Responsibility:	NSPE	and	IEEE	differ	in	that	NSPE	is	more	focused	on	how	engineers	
behave	to	not	shine	a	negative	light	on	the	profession	while	IEEE	is	more	focused	on	keeping	the	
public	informed	on	the	implications	of	their	work.	

	

7.2	PROJECT	SPECIFIC	PROFESSIONAL	RESPONSIBILITY	AREAS	

Work	Competence:	This	applies	to	our	professional	context	because	it	is	mainly	a	software	
project,	which	requires	maintenance	and	modification	to	be	performance,	potentially	much	later	
and	not	by	us.	Our	well-informed	decisions	in	the	building	of	these	components	will	result	in	an	

	 	 	

	

	

intuitive	and	easy-to-debug	design.	The	team’s	work	competence	has	been	satisfactory	thus	far.	We	
have	not	had	issues	writing	code,	reasoning	about	our	design,	or	annotating	articles	to	train	a	NER	
model	on.	

Financial	Responsibility:	This	professional	responsibility	area	applies	to	this	project	because	
hosting	software	can	become	expensive	if	not	done	carefully.	This	project	consists	of	a	database	and	
webserver,	and	when	choosing	to	host	it	on	something	like	AWS,	a	cost	will	incur.	If	not	careful	
about	how	many	resources	are	being	used	on	an	Infrastructure	as	a	Service	product,	it	can	quickly	
go	above	hundreds	of	dollars.	This	team’s	level	of	performance	in	terms	of	financial	responsibility	is	
not	yet	applicable.	We	have	not	begun	hosting	our	project	on	servers,	thus	so	far,	our	product	has	
cost	nothing	to	build	in	terms	of	money.	We	have	only	used	readily	available,	free	software	and	
libraries.	

Communication	Honesty:	This	professional	responsibility	area	applies	heavily	for	multiple	
reasons.	This	product	hinges	on	our	development	team	having	open	communication	about	
techniques,	progress,	and	errors	we	encounter.	Without	proper	communication,	we	will	be	unable	
to	solve	such	complex	problems	like	Named-Entity-Recognition	or	Relationship	Extraction.	This	
team’s	level	of	performance	with	honest	communication	at	a	high	level.	This	team	has	had	
disagreements	that	we	solve	with	reason,	evidence,	and	group	votes.	

Health,	Safety,	Well-Being:	This	professional	knowledge	area	is	highly	important	to	our	project	
because	the	product	we	are	developing	could	potentially	be	used	by	the	attacker	of	a	system	rather	
than	a	defender.	This	misuse	of	our	project	has	implications	for	the	health,	safety,	and	well-being	of	
the	public	due	to	the	prominence	of	technology	in	society.	During	our	technical	work	we	must	
consider	the	impact	each	decision	may	have	on	the	public.	This	team’s	level	of	performance	in	
professional	responsibility	of	health,	safety,	and	well-being	has	been	lacking.	We	have	put	very	
little	thought	into	ensuring	only	trusted	individuals	may	use	our	service.	One	idea	was	to	vet	
candidates	of	use	using	their	credentials,	thus	disallowing	many	attackers	from	utilizing	the	
service.	More	thought	needs	to	be	put	into	this	area	due	to	its	importance.	

Property	Ownership:	This	professional	knowledge	area	applies	to	our	project	because	it	uses	
websites	hosted	by	other	people	and	we	have	the	potential	to	harm	their	servers	if	not	careful.	If	we	
do	not	set	a	rate	limit	or	large	enough	interval	between	fetching	their	website,	we	could	
accidentally	perform	a	DoS	(Denial	of	Service)	attack	on	their	website.	We	are	taking	special	
precautions	to	not	damage	their	property	in	the	process	of	obtaining	their	data.	The	team’s	level	of	
performance	with	respect	to	property	ownership	has	been	at	a	medium	level.	Although	we	have	not	
yet	implemented	rate	limits	for	the	scraper,	we	have	been	respectful	of	the	source’s	servers	and	not	
scrape	articles	from	them	too	often.	We	are	planning	on	setting	an	interval	of	one	hour	and	a	rate	
limit	of	a	couple	seconds	to	not	interrupt	their	typical	traffic.	

Sustainability:	This	area	is	hardly	relevant	to	our	project	because	we	are	performing	operations	
typical	of	a	software	project	of	this	type.	Our	impact	in	terms	of	using	servers	from	data	centers	is	
less	than	that	of	small	companies	and	feels	very	responsible.	Our	development	practices	are	
sustainable	due	to	the	small	dataset	we	are	working	with.	The	team’s	level	of	performance	in	the	
professional	responsibility	of	sustainability	is	not	yet	applicable.	This	is	because	we	have	not	begun	
hosting	our	product	on	a	server	or	used	GPUs	to	train	neural	networks.	We	have	just	begun	
working	on	the	software	and	testing	it	on	our	local	machines.	

Social	Responsibility:	This	professional	responsibility	is	not	as	applicable	to	this	project	due	to	
the	target	audience.	We	have	been	less	concerned	about	improving	understanding	for	uneducated	

	 	 	

	

	

individuals	and	society,	but	more	about	being	a	tool	specifically	for	researchers	and	individuals	
already	in	the	cyber	security	field.	Our	performance	in	the	professional	area	of	social	responsibility	
has	been	low.	In	terms	of	the	IEEE	standard,	we	have	made	no	effort	to	attempt	to	explain	our	
product	to	a	general	audience.	In	terms	of	the	NSPE,	we	have	conducted	ourselves	respectfully	
when	in	communication	with	our	advisor/client.	

7.3	MOST	APPLICABLE	PROFESSIONAL	RESPONSIBILITY	AREA	

The	most	applicable	professional	responsibility	area	for	this	project	is	Work	Competence.	We	owe	
it	to	the	users	of	the	finished	product	in	addition	to	future	developers	tasked	with	maintaining	this	
software	to	put	thought	and	care	into	our	design	and	implementation	decisions.	A	majority	of	our	
requirements	also	hinge	on	our	team	performing	with	a	high	level	of	work	competence.	

8		Closing	Material	

8.1	DISCUSSION	

So	far,	implementation	performed	by	our	project	has	been	successful.	Our	scraper	addresses	
requirements	such	as	using	3	or	more	sources	for	cybersecurity	information	and	article	extraction	
using	HTML	parsing.	The	requirement	of	crawling	the	sources	at	least	once	a	day	has	not	been	
implemented	yet	due	to	infrastructure	being	needed	to	run	this	job.	The	scraper	is	currently	a	piece	
of	software	that	is	run	once	locally	to	grab	the	information.	We’ve	also	met	our	requirements	of	
having	code	that	is	written	in	a	modular	form	with	documentation	and	an	up-to-date	README	file.	
The	planning	of	the	parser	has	been	more	challenging	than	initially	expected.	There	are	a	couple	of	
already	existing	Named-Entity	Recognition	models	available	trained	on	cybersecurity	domain	
language,	however	this	does	not	address	the	extraction	of	relationships	and	doesn’t	exactly	match	
the	entities	we	want	to	track.	

	

8.2	CONCLUSION	

So	far,	the	scraper	component	of	system	has	been	implemented,	including	test	running	and	
generating	code	coverage	of	tests.	All	libraries	being	used	in	the	various	components	have	been	
selected,	and	inputs	and	outputs	of	each	component	have	been	defined.	The	goal	of	this	project	is	
to	build	a	knowledge	graph	containing	cybersecurity-specific	terminology	to	allow	querying	of	
useful	information.	In	our	context,	“useful”	information	can	be	defined	as	relationships	between	
attackers,	organizations,	software,	vulnerabilities,	and	timeframes.	Another	goal	is	to	parse	text	
from	cybersecurity	news	articles	to	build	this	knowledge	graph.	The	main	constraint	from	
achieving	these	goals	is	performing	Named-Entity	recognition	and	Relationship	Extraction.	These	
are	complex	tasks	that	need	to	be	performed	on	a	variety	of	sources	with	different	writing	styles.		

	

8.3	REFERENCES	

P.	Evangelatos,	C.	Iliou,	T.	Mavropoulos,	K.	Apostolou,	T.	Tsikrika,	S.	Vrochidis,	and	I.	
Kompatsiaris,	“Named	entity	recognition	in	cyber	threat	intelligence	using	transformer-

	 	 	

	

	

based	models,”	2021	IEEE	International	Conference	on	Cyber	Security	and	Resilience	(CSR),	
2021.		

P.	Ranade,	A.	Piplai,	A.	Joshi,	and	T.	Finin,	“Cybert:	Contextualized	embeddings	for	the	
cybersecurity	domain,”	2021	IEEE	International	Conference	on	Big	Data	(Big	Data),	2021.	

N.	Rastogi,	S.	Dutta,	A.	Gittens,	and	M.	Zaki,	“TINKER:	A	framework	for	Open	source	Cyberthreat	
Intelligence,”	21st	International	Conference	on	Trust,	Security	and	Privacy	in	Computing	and	
Communications,	Oct.	2022.	

	

8.4	APPENDICES	

8.4.1	Team	Contract	

Team	Members:	

1)	Carter	Kitelinger	 	 	 2)	Brandon	Richards	

3)	Alice	Cheatum	 	 	 4)	Micah	Gwin	

5)	Nicklas	Cahill		 	 	 6)	Michael	Watkins	

	

Team	Procedures	

1. Day,	time,	and	location	(face-to-face	or	virtual)	for	regular	team	meetings:	
a. Friday	1-2pm	at	Parks	Library	or	SIC	in	person.	

2. Preferred	method	of	communication	updates,	reminders,	issues,	and	scheduling	(e.g.,	e-
mail,	phone,	app,	face-to-face):	

a. Our	preferred	method	of	communication	is	Discord.	
3. Decision-making	policy	(e.g.,	consensus,	majority	vote):	

a. Decisions	will	be	made	by	a	⅔’s	majority,	i.e.	4/6	team	members	will	have	to	agree.	
4. Procedures	for	record	keeping	(i.e.,	who	will	keep	meeting	minutes,	how	will	minutes	be	

shared/archived):	
a. Minutes	will	be	recorded	in	Google	Drive.	Each	meeting	will	be	a	document	and	

they	can	be	archived	into	an	“Archive”	folder	with	the	date	as	the	document	title.	
Team	members	will	take	turns	recording	minutes	throughout	the	semester.	

	

Participation	Expectations	

1. Expected	individual	attendance,	punctuality,	and	participation	at	all	team	meetings:	
a. Team	members	will	show	up	for	each	meeting	within	5	minutes	of	the	start	time.	

Moderate	participation	is	expected.	
2. Expected	level	of	responsibility	for	fulfilling	team	assignments,	timelines,	and	deadlines:	

a. Team	members	should	meet	deadlines	or	update	the	team	with	what	is	taking	
longer	than	expected	and	ask	for	help	or	clarification.		

	 	 	

	

	

3. Expected	level	of	communication	with	other	team	members:	
a. Team	members	should	communicate	if	there	are	issues,	a	change	in	plans,	etc.	

4. Expected	level	of	commitment	to	team	decisions	and	tasks:	
a. Team	members	are	expected	to	vote	on	every	team	decision.	

	

Leadership	

1. Leadership	roles	for	each	team	member	(e.g.,	team	organization,	client	interaction,	
individual	component	design,	testing,	etc.):	

a. Client	Interaction	-	Carter	Kitelinger	
b. Python/ML	Development	Leads	-	Michael	Watkins,	Micah	Gwin	
c. Frontend	Development	Lead	-	Brandon	Richards	
d. Testing	Lead	-	Nicklas	Cahill	

2. Strategies	for	supporting	and	guiding	the	work	of	all	team	members:	
a. Agile/SCRUM	

3. Strategies	for	recognizing	the	contributions	of	all	team	members:	
a. After	each	sprint,	the	retrospective	will	capture	all	the	accomplishments	of	each	

team	member	and	progress	they’ve	made.	

	

Collaboration	and	Inclusion	

1. Describe	the	skills,	expertise,	and	unique	perspectives	each	team	member	brings	to	the	
team.	

a. Brandon	Richards	
i. Frontend	technologies	(web,	mobile)	
ii. Python	
iii. web	scraping	
iv. Git	

b. Micah	Gwin	-	Python/JS/NodeJS/C/Java	development,	Cloud	development	and	
security,	NoSQL	and	SQL	Databases,	Linux/Shell,	Terraform/Cloudformation,	
Drone	and	Jenkins	CI,	Git,	React,	Agile/Scrum,	AWS	Technologies	like	S3,	
DynamoDB,	IAM,	Lambda,	EC2	

c. Alice	Cheatum	
i. Python,	Rust,	Java,	C,	shell	scripting	
ii. Linux	
iii. Backend	development	
iv. Git	
v. Common	cybersecurity	tools	
vi. Penetration	testing	/	kali	linux	
vii. Server	administration	/	network	services	
viii. cryptography	

d. Carter	Kitelinger	-	C,	Java,	Linux,	Kali(Cyber	Security	tools),	Python,	Bash	
Scripting,	Git	

e. Michael	Watkins	

	 	 	

	

	

i. Risk	analysis/automated	risk	assessment	
ii. Most	common	cybersecurity	tools	
iii. Networking	
iv. Deep	knowledge	of	IDS/netflow/log	message	parsing	and	alerting	(SIEM)	
v. Git/SVN,	and	code	collaboration/scrum	
vi. Using	data	sources:	Twitter,	MS-ISAC/CISA,	Cisco	Talos,	security	

advisories	
vii. Python/Go/Rust/Java/C,	powershell/bash	
viii. Web	and	desktop	application	development	
ix. Linux	sysadmin	
x. Web	scraping	
xi. Backend	data	management	(elastisearch,	psql,	nosql	etc)	
xii. Basic	machine	learning	

f. Nicklas	Cahill	
i. C,	Java,	Bash/Powershell	Scripting	
ii. Linux	
iii. Penitration	testing/Kali	Linux	
iv. Network	Defence/Firewall	management	
v. Backend	data	management(SQL)	

2. Strategies	for	encouraging	and	supporting	contributions	and	ideas	from	all	team	members:	
a. Questions	will	be	asked	in	an	open	discussion	and	before	moving	on	team	

members	will	be	asked	if	there	are	any	more	comments	and/or	concerns.	
3. Procedures	for	identifying	and	resolving	collaboration	or	inclusion	issues	(e.g.,	how	will	a	

team	member	inform	the	team	that	the	team	environment	is	obstructing	their	opportunity	
or	ability	to	contribute?)	

a. Write	down	which	events,	decisions,	or	discussions	they	were	not	properly	
included	in.	Bring	to	the	team,	then	advisor.	

	

Goal-Setting,	Planning,	and	Execution	

1. Team	goals	for	this	semester:	
a. Deliver	expected	deliverables	in	a	timely	manner.	
b. Learn	from	people	more	experienced	in	a	skillset.	

2. Strategies	for	planning	and	assigning	individual	and	team	work:	
a. Use	Agile/SCRUM	to	pick	up	work	by	experienced	individuals	and	others	who	

want	to	learn.	
3. Strategies	for	keeping	on	task:	

a. Review	minutes,	add	next	week’s	tasks	to	Todo	list	(sprint),	have	retrospective	
after	week	is	over.	

	

Consequences	for	Not	Adhering	to	Team	Contract	

1. How	will	you	handle	infractions	of	any	of	the	obligations	of	this	team	contract?	

	 	 	

	

	

a. Document	infractions	with	link	to	corresponding	rule	in	team	contract,	take	to	
team	and	discuss	if	any	rules	need	to	be	changed	or	additional	support	is	needed.	

2. What	will	your	team	do	if	the	infractions	continue?	
a. If	the	infractions	continue,	we	will	first	raise	the	concern	with	the	faculty	advisor,	

then	the	professor.	

a)	I	participated	in	formulating	the	standards,	roles,	and	procedures	as	stated	in	this	contract.	

b)	I	understand	that	I	am	obligated	to	abide	by	these	terms	and	conditions.	

c)	I	understand	that	if	I	do	not	abide	by	these	terms	and	conditions,	I	will	suffer	the	

consequences	as	stated	in	this	contract.	

1)	Carter	Kitelinger____________________________________	DATE	__09/16/2022______	

2)	Micah	Gwin__DATE	__09/16/2022______	

3)	Nicklas	Cahill______________________________________	DATE	__09/16/2022______	

4)	Alice	Cheatum_____________________________________	DATE	__09/16/2022______	

5)	Brandon	Richards__________________________________	DATE	___09/16/2022_____	

6)	Michael	Watkins___________________________________DATE	___09/16/2022_____	

7)	___	DATE	__________________	

8)	___	DATE	__________________	

	

