
5 Testing
Our	project	will	make	use	of	many	types	of	testing	to	test	the	various	software	components	and	
subcomponents.	For	each	of	our	components,	our	goal	is	to	have	at	least	75%	code	coverage	and	100%	of	
tests	pass.	Each	component	is	responsible	for	containing	unit,	integration,	and	system	tests	that	verify	its	
behavior	internally,	while	additional	integration	and	system	tests	will	be	outside	of	these	components	to	
test	their	interaction.		

When	changes	are	made	in	one	component,	it	will	be	required	to	run	all	tests	in	that	component	in	
addition	to	all	integration	and	system	tests.	New	tests	should	be	added	to	verify	the	behavior	of	newly	
added	logic.	Our	main	instruments	for	testing	will	be	the	Python	testing	framework	unittest	for	our	
components	written	in	Python	and	the	testing	framework	jest	for	our	website	component	written	in	
TypeScript.	This	will	work	to	run	unit	tests	on	individual	components	and	integration	and	system	tests	
across	components.	

The	team’s	overall	testing	philosophy	is	to	test	early,	test	often,	and	use	it	as	a	tool.	Testing	can	be	a	
wonderful	tool	in	a	Test-Driven	Development	(TDD)	framework	because	expected	inputs	and	outputs	can	
be	specified	first,	then	the	tests’	results	indicate	to	the	developer	whether	they’ve	implemented	the	desired	
functionality.	

	

5.1 Unit Testing

Scraper	

The	scraper	tests	and	code	coverage	should	be	run	after	every	commit	to	ensure	no	breaking	changes	have	
been	made.	The	testing	plan	is	as	follows:	

1. Open	terminal	
2. Change	directory	to	`scraper`	
3. Run	`make	coverage`	command	
4. Verify	no	failures	in	tests	

a. If	all	tests	pass,	the	text	“OK”	will	show	at	the	bottom	of	the	output.	
b. If	one	or	more	tests	fail,	the	bottom	of	the	output	will	read	“FAILED”	with	the	number	of	

failures	in	parenthesis	(e.g.,	“FAILED	(failures=1)”)	
5. Open	generated	coverage	file	`htmlcov/index.html`
6. Ensure	test	coverage	is	greater	than	or	equal	to	75%.	

	

Parser	

The	parser	tests	and	code	coverage	should	be	run	after	every	commit	to	ensure	no	breaking	changes	have	
been	made.	The	testing	plan	is	as	follows:	

1. Open	terminal
2. Change	directory	to	`parser`
3. Run	`make	coverage`	command
4. Verify	no	failures	in	tests

a. If	all	tests	pass,	the	text	“OK”	will	show	at	the	bottom	of	the	output.
b. If	one	or	more	tests	fail,	the	bottom	of	the	output	will	read	“FAILED”	with	the	number	of	

failures	in	parenthesis	(e.g.,	“FAILED	(failures=1)”)
5. Open	generated	coverage	file	`htmlcov/index.html`
6. Ensure	test	coverage	is	greater	than	or	equal	to	75%.

	

Website	

The	tests	and	code	coverage	for	the	website	component	should	be	run	after	every	commit	to	ensure	no	
breaking	changes	have	been	made.	The	testing	plan	is	as	follows:	

1. Open terminal
2. Change directory to `frontend`	
3. Run `yarn test` command	
4. Verify no test failures	
5. Open generated coverage file `htmlcov/index.html`
6. Ensure test coverage is greater than or equal to 75%.	

	

5.2 Interface Testing

Our	interfaces	include	the	source	list	for	the	scraper,	the	entity-relationship	output	from	the	parser,	and	the	
graph	API	queried	by	the	frontend	to	be	rendered.	To	test	these	interfaces,	we	have	tests	in	place	that	send	
data	through	the	interface	and	verify	its	integrity.	In	addition,	the	parser	entity-relationship	output	can	be	
tested	by	inputting	mock	article	data	and	ensuring	the	parser	output	is	as	expected.	For	most	of	our	existing	
and	future	tests	we	use	the	Python	testing	library	such	as	unittest	or	mocking	tools	in	a	test	class	that	
asserts	the	scraper	and	parser	are	functioning	properly.	The	graph	API	is	provided	by	Neo4j	and	thus	isn’t	
tested	in	our	project,	although	any	bindings	that	we	write	for	this	API	will	be.	

	

5.3 Integration Testing

The	critical	integration	paths	in	our	project	begin	with	the	human-developed	source	list	being	handled	
correctly	by	the	scraper.	The	next	is	the	scraper	properly	storing	article	information	in	the	MongoDB	
database.	Then	after	this	is	completed,	the	parser	retrieves	the	MongoDB	data	and	constructs	the	list	of	
entities	and	relationships.	Lastly	this	entity-relationship	data	is	stored	in	the	Neo4J	graph	database	and	
then	queried	by	the	frontend	for	rendering.	All	the	above	paths	are	essential	to	the	project	operating	
correctly	and	can	be	tested	by	using	Docker	Compose	to	build	and	run	all	the	containers	on	a	local	or	cloud	
server,	then	use	a	script	or	library	to	verify	the	container	are	communicating	properly	with	data	expected	by	
that	test	case.	

	

5.4 System Testing

By	using	source	lists	with	inputs	for	which	the	expected	outputs	are	known	we	can	test	that	the	output	of	
our	system	falls	within	our	defined	parameters.	Our	first	step	to	test	output	we	will	use	portions	of	
documents	we	annotated	manually	to	ensure	the	machine	learning	program	is	outputting	what	we	expect	it	
to	and	compare	it	to	the	accuracy	requirements	of	the	annotation.	As	the	machine	learning	portion	gets	fed	
more	documents	and	learns	how	to	annotate	with	more	accuracy,	we	will	begin	to	give	it	larger	portions	of	
a	document	until	it	can	annotate	a	full	document	within	the	accuracy	percentage	requirement	we	defined.	
Once	this	point	has	been	reached,	we	will	begin	to	give	it	full	documents	until	the	machine	learning	has	
been	refined	enough	to	where	it	is	no	longer	required	for	us	to	test	each	output	for	accuracy.	Our	system	
testing	will	use	all	the	tools	mentioned	in	the	unit,	interface,	and	integration	test	sections	to	test	the	whole	
system,	as	each	section	needs	to	perform	to	our	standards	for	the	whole	program	to	perform	well.	If	one	
piece	is	not	working	up	to	standards,	the	output	may	contain	unexpected	behavior.		

	

5.5 Regression Testing

Our	strategy	to	implement	Regression	Testing	is	supported	by	two	rules:	Have	a	separate,	clean,	working	
copy	of	the	code	on	our	main	branch	and	run	unit,	integration,	and	system	tests	on	every	pull	request	to	
this	branch.	The	pull	request	is	not	able	to	be	merged	until	all	tests	are	passing.	This	will	ensure	existing	
functionality	has	not	been	broken,	plus	having	the	main	branch	be	a	clean	working	copy	allows	us	to	
rollback	changes	that	break	existing	functionality.	Critical	features	that	our	project	needs	to	ensure	do	not	
break	are	the	scraper	fetching	sources	and	the	parser	processing	these	sources	and	outputting	expected	
entities	and	relationships.	

	

5.6 Acceptance Testing
Acceptance	testing	of	our	functional	requirements	will	be	performed	by	running	unit,	integration,	and	
system	tests	to	provide	verifiable	evidence	that	our	test	cases	are	passing.	Most	of	our	project’s	non-
functional	requirements	can	be	summed	up	as	a	satisfactory	level	of	code	quality,	libraries	being	open-
source	and	a	license	allowing	free	usage,	and	documentation	of	code.	These	non-functional	requirements	
can	be	verified	by	reviewers	of	pull	requests.	For	example,	if	a	new	library	is	added	as	a	dependency,	the	
reviewer	should	be	double	checking	the	license	allows	us	to	use	it.	Our	client	will	be	involved	in	acceptance	
testing	by	being	made	available	the	number	of	passed	tests	and	code	coverage,	ensuring	we’ve	met	the	
expectations	set	in	the	requirements	and	metrics/evaluation	criteria.	They	will	also	be	delivered	our	
iterative	beta	builds	after	each	sprint	to	evaluate	our	progress	and	correctness	in	our	design	
implementation.	
	
	

5.7 Security Testing

Security	Testing	will	consist	of	testing	that	malicious	queries	from	the	frontend	website	are	not	able	to	
perform	any	sort	of	remote	code	execution	(RCE)	on	the	backend	database.	To	ensure	this	doesn’t	happen,	
all	inputs	from	the	user	need	to	be	sanitized.	Testing	plans	for	security	testing	include	performing	various	
types	of	penetration	testing	on	the	frontend,	including	NOSQL	injection	and	cross-site	scripting,	by	
performing	queries	with	malformed	input	to	execute	malicious	code	on	the	server	or	in	the	user’s	browser.	

	

5.8 Results

The	unit	testing	on	the	scraper	had	two	testing	requirements	associated	with	it.	All	tests	(100%)	had	to	pass,	
and	the	test	coverage	of	scraper	Python	source	code	had	to	be	at	least	75%.	Our	unit	testing	successfully	
achieved	those	goals;	all	unit	tests	passed,	and	the	coverage	is	76%.	This	was	able	to	show	that	the	scraper	is	
working	exactly	as	intended	taking	input	from	the	source	list	and	outputting	the	article	data.	The	following	
figure	shows	an	output	of	test	coverage	in	our	current	implementation	of	the	scraper.	Note	the	total	
coverage	is	shown	at	the	top.	

	

The	scraper	testing	serves	as	a	proof	of	concept	for	each	component	containing	unit,	integration,	and	
system	tests.	Future	work	includes	creating	tests	for	the	other	components,	and	then	integration	and	
system	tests	between	components.	All	the	testing	described	in	this	section	will	ensure	that	our	
implementation	matches	both	our	chosen	design	and	verify	our	requirements	are	being	met.		

