
4.3 Proposed Design 

4.3.1	Overview	

Our	current	design	includes	multiple	software	components,	each	with	a	roll	to	play	to	achieve	our	overall	
goal.	One	component	is	responsible	for	collecting	data	from	external	sources,	another	for	extracting	
subjects	and	relationships	between	them	from	that	data,	and	another	for	saving	this	information	in	a	graph.	
This	design	works	as	a	pipeline	to	start	with	raw	text	information	and	end	up	with	a	graph	that	can	be	
queried	for	information.	One	last	component	is	a	frontend	that	users	can	use	to	perform	the	queries.	

	

4.3.2	Detailed	Design	and	Visual(s)	

4.3.2.1	Scraper	

The	scraper	is	a	Python	module	responsible	for	inputting	a	list	of	sources	and	outputting	text	files.	The	
source	list	input	should	be	in	JSON	format	and	be	an	array	of	objects,	each	with	a	“url”	property	that	points	
to	the	URL	of	the	main	feed.	Each	output	text	file	should	be	the	text	from	an	article	not	yet	scraped	from	
the	inputted	source	list.	Scraping	should	be	done	using	the	Python	library	Scrapy,	and	extraction	of	the	
scraped	text	should	be	done	using	the	Python	library	BeautifulSoup.	The	next	subcomponent	of	the	scraper	
is	the	“Cleanup”.	The	input	will	be	the	extracted	text	and	the	output	will	be	text	without	irrelevant	
information.	This	will	require	little	or	much	effort	depending	on	the	source	and	thus	should	be	examined	
on	a	source-by-source	basis.	The	last	subcomponent	of	the	scraper	is	a	database	to	store	information	
including	the	URL	fetched,	the	article	text,	and	a	timestamp	of	when	it	was	collected.	

	



4.3.2.2	Parser	

The	parser	is	a	Python	module	that	takes	input	from	the	scraper	(text	files)	and	performs	Named-Entity-
Recognition	(NER)	and	Relationship	Extraction	(RE).	These	two	jobs	allow	for	the	creation	of	a	graph	
structure	with	Named	Entities	as	the	vertices	and	relationships	as	the	edges.	The	output	of	this	component	
are	entities	and	relationships	for	the	knowledge	graph.	

The	NER	subcomponent	will	extract	the	following	types	of	entities	from	text:	

- Organization	
- Vulnerability	-	CVEs	or	named/known	exploits	
- Threat	Group	-	Known	malicious	groups	
- Malware	Type	-	Virus',	Trojans,	Ransomware,	etc.	
- Malware	Name	-	Name	of	Malware	
- System	-	OS’s,	Hardware,	Software	
- Port	
- URL	
- IP	
- Protocol	
- Filename	
- Filetype	
- Version	-	Patched	versions	or	still	vulnerable	versions	of	SW	

	
The	RE	subcomponent	will	extract	the	following	relationships	between	entities:	

- hasVulnerability		
o System,	Protocol,	Version	->	Vulnerability	

- usesVulnerability		
o Malware	Type,	Malware	Name,	Threat	Group	->	Vulnerability	

- usedBy		
o System,	Protocol,	Filetype,	Filename	->	Organization,	Threat	Group,	System	
o Port	->	Protocol,	System	
o Vulnerability,	URL,	IP	->	Threat	Group,	Malware	Name	

- attacked		
o Threat	Group	->	Organization	

- attackedBy	
o Organization	->	Threat	Group	

- isType		
o Malware	Name	->	Malware	Type	

	



4.3.2.3	Knowledge	Graph	

The	Knowledge	Graph	component	will	accept	entities	and	relationships	as	input	and	store	these	into	a	
graph	database.	Our	current	choice	for	the	database	is	Neo4j	as	it	offers	good	performance,	no	cost,	and	is	
graph	based.	The	entities	will	be	stored	as	vertices	in	the	graph	(called	Nodes	in	Neo4j)	and	relationships	
between	entities	will	be	stored	as	edges	in	the	graph	(called	“relationships”	in	Neo4j).	This	should	be	
running	in	a	Docker	container	but	have	an	exposed	API	that	the	Parser	is	able	to	use	to	insert	these	entities	
and	relationships.	It	should	also	expose	an	API	to	perform	queries	on	the	graph,	such	as	getting	all	nodes	
related	to	a	node	by	some	relationship.	

	

4.3.2.4	Frontend	

The	frontend	of	our	project	will	be	a	React	web	application	written	in	TypeScript.	The	web	app	will	accept	
user	input	specifying	what	information	should	be	queried	and	will	perform	an	API	request	on	the	
Knowledge	Graph.	An	example	could	be	a	cybersecurity	researching	searching	for	“Samsung”	and	getting	
back	all	or	a	limited	set	of	nodes	connected	to	it,	such	as	recent	attacks	launched	against	them.	It	should	
then	display	the	result	in	a	graph	or	tree	format.	

4.3.3	Functionality	

Our	design	is	intended	to	operate	by	the	user	visiting	a	web	application.	The	user	will	enter	in	a	query,	such	
as	a	company,	vulnerability,	and/or	timeframe	they	are	searching	for,	and	the	Knowledge	Graph	will	be	
queried	with	those	parameters.	The	user	will	be	able	to	navigate	around	the	Knowledge	Graph	by	dragging	
the	mouse	in	different	directions	to	explore	the	connections	between	nodes.	The	user	may	also	choose	to	
have	their	results	displayed	in	a	Tree	View	rather	than	a	Graph	View.	

If	the	user	enters	in	a	query	for	which	there	are	no	results,	they	will	be	prompted	that	no	results	exist.	In	
the	case	of	an	error	in	the	query,	the	user	will	be	prompted	that	their	query	was	completed	unsuccessfully	
along	with	any	additional	error	information	from	the	server.	

Periodically	the	pipeline	will	run	again,	scraping	new	articles,	parsing	them,	and	inserted	the	extracted	
information	into	the	knowledge	graph.	The	interval	is	currently	defined	as	1	hour,	although	this	is	subject	to	
change.	

4.3.4	Areas	of	Concern	and	Development	

The	current	design	completely	satisfies	the	client	requirements	and	moderately	meets	the	expected	needs	
of	our	users.	The	area	of	most	concern	will	be	the	development	of	the	Named-Entity-Recognition	model	
and	performing	Relation	Extraction	due	mostly	to	many	unknowns	we	have	yet	to	encounter.	Performing	
NER	and	RE	is	on	track	to	be	the	most	complex	portion	of	the	project.	The	immediate	plan	for	developing	
the	solution	to	this	component	is	beginning	testing	whether	we	need	to	train	our	own	models	to	perform	
these	steps	or	if	we	may	take	advantage	of	existing	technologies	such	as	CyNER.	If	we	are	able	to	use	a	
previously-trained	model	for	the	NER	step,	this	would	drastically	decrease	the	level	of	effort	needed	for	a	



successful	Parser	component.	We	currently	have	no	questions,	as	our	client	and	faculty	adviser	has	
graciously	provided	us	with	scientific	papers	going	into	details	about	different	attempts	at	Cybersecurity	
Knowledge	Graphs	and	some	Information	Extraction	on	a	text	corpus.	

4.4 Technology Considerations 

Scraping	–	scrapy	

For	scraping	we	chose	the	scrapy	library.	It	is	one	of	the	most	popular	Python	web-crawling	frameworks.	It	
features	a	wide	variety	of	inbuilt	tools	to	help	us	collect	the	data	we	need.	Ultimately,	we	chose	it	because	of	
the	rich	community	and	how	widespread	the	framework	is.		

One	of	the	weaknesses	of	scrapy	is	how	basic	its	parsing	tools	are.	Scrapy	is	great	for	collecting	data	from	
websites,	but	not	the	best	at	actually	parsing	that	data.	A	solution,	which	we	are	implementing	is	to	use	
another	framework	to	parse	the	data.	We	chose	BeautifulSoup4	due	to	its	rich	feature	set,	some	team	
member’s	prior	knowledge	and	its	widespread	usage.	

NER	–	spacy	

We	chose	spacy	as	our	NER	library,	due	to	the	good	support	available	and	that	some	team	members	and	
our	advisor	have	some	background	in	this	framework.	There	exist	other	options	such	as	the	NLTK,	and	
cloud	offerings.	We	did	not	want	to	use	a	proprietary	framework	like	the	Google	Cloud	Natual	Language	
API	to	keep	our	project	open	source	and	free.	

NLTK	is	more	academic	focused	that	spacy.	It	is	meant	to	be	a	toolbox	of	machine	learning	tools	for	
academic	use,	while	spacy	is	more	oriented	towards	developers.	Spacy	has	a	richer	set	of	tools	to	help	us	
accomplish	our	goal	faster	and	more	efficiently.	NLTK	focuses	just	on	strings,	while	Spacy	focuses	on	
objects.	Most	of	our	data	is	objects,	so	spacy	was	the	better	fit.	

Database	–	SQL	(column	based)	vs	Neo4j	(graph	based)	

The	decision	to	use	a	graph-based	database	was	a	very	easy	decision.	We	are	building	a	graph,	so	a	graph-
based	database	fits	our	data	type.	Graph-based	databases	use	more	memory	and	are	harder	to	do	text	
queries	on,	but	store	trees	and	graph	data	more	efficiently	than	a	column-based	database.		

Furthermore,	a	graph-based	database	allows	storing	arbitrary	data.	A	column-base	database	requires	data	to	
be	in	a	very	rigid	format	–	data	must	fit	into	the	specified	columns.	A	lot	of	our	data	is	wildly	different,	with	
types	such	as	vulnerabilities,	software	packages	and	malware.	This	variance	makes	storing	data	in	columns	
difficult	and	unscalable.	

Web	technologies	&	NLP	stretch	goal	

Our	project	will	make	use	of	TypeScript	and	the	React	library.	We	came	to	this	decision	over	other	web	
development	frameworks	because	of	a	large	ecosystem	of	packages,	previous	experience	of	team	members,	
and	the	easy-of-use	of	performing	API	calls	and	displaying	the	data	in	an	aesthetic	way.	Other	
considerations	were	made	such	as	Angular,	Vue,	or	simply	HTML/CSS/JS.	Ultimately	because	of	the	
previously	described	reasons,	React	won	as	the	library	of	choice.	

4.5 Design Analysis  

Scraper:		



• Implemented	basic	scraping	and	parsing	functionality,	scraper	reads	input	of	sources	in	a	JSON	
document	and	outputs	the	parsed	HTML	document	for	each	source.	

• Integrated	the	BeautifulSoup4	parses	in	with	the	Scrapy	spider.	Now	instead	of	raw	HTML	data,	it	
is	being	cleaned	up	to	a	more	readable	format	which	will	make	storing	in	a	database	or	running	
language	processing	on	the	data	much	easier.		

Docker	Container	and	GitHub:	

• Constructed	new	folder	setup	in	GitHub	that	allows	each	folder	to	be	a	Docker	container.	
• Used	Docker	Compose	to	organize	and	build	each	container.	
• The	scraper	and	MongoDB	database	that	was	constructed	to	store	article	information	will	each	be	a	

separate	container.		

Article	Tagging:	

• Began	using	the	NER	Annotator	tool	available	online	in	order	to	create	a	model	which	can	be	used	
by	the	spacy	tool	in	order	to	process	the	article	information.	

So	far	during	the	implementation	of	the	items	above,	the	proposed	design	has	functioned	well	in	organizing	
and	linking	the	different	components	together.	The	scraper	and	the	parser	are	currently	being	worked	on	
however	the	other	sections	of	the	proposed	design	have	not	been	started	yet	so	an	analysis	of	how	they	are	
working	is	not	possible.	For	future	design,	the	article	tagging	will	continue	after	more	information	is	
scraped	and	stored	in	the	database.	Then	the	created	model	from	NER	tagging	will	be	used	to	parse	the	
article	data	and	identify	information	to	build	the	knowledge	graph.	


