
4 Design 

4.1 Design Context 

4.1.1 Broader Context 

Our project is primary focused on two communities: security researchers in academia and information 

security roles in industry. Although these communities will be directly affected by our project, the entire 

world will be indirectly affected as well. The increased efficiency of gathering cybersecurity knowledge will 

allow our target communities to better do their job and, increasing safety, security, privacy, and integrity in 

all software applications. As societies around the world grow more dependent on technology, our goal is to 

make the software they interact with safer. 

Area Considerations 

Public health, 

safety, and 

welfare 

All users of a technology companies' products are indirectly affected by our 

project due to the utility we provide information security staff. Helping these 

roles increases the public safety and welfare in their interaction with technology. 

It could also harm job opportunities of these positions, as an effective product 

would require less staff to research and fix problems. 

In the same way, researchers’ use of our product will also improve the general 

populations’ interaction with technology utilizing their discoveries. 

Global, cultural, 

and social 

Our project accurately reflects the values of our target cultural groups including 

security researchers in academia and information security staff in industry. Using 

extracted information to build a knowledge graph that can be queried is in line 

with practices to streamline cybersecurity information gathering. 

Environmental  The environmental effects of this project are indirect. The software will be 

executed and hosted on servers that use a lot of electricity of unknown origin 

(renewable vs. nonrenewable). 

There is a potential impact of training ML models with GPU clusters in terms of 

energy usage, although our project would have to scale magnitudes larger for this 

to become a reasonable concern. 

Economic This project being successful will have an impact of increased productivity by 

information security roles in industry by getting them access to recent, 

condensed, and relevant information quicker.  

One pending consideration is if the project proves extremely useful what 

obligation we have to make it available to good actors in terms of cost. 

 



4.1.2 Prior Work/Solutions 

There have been research papers on the idea of using Knowledge Graphs to store information in the Cyber 

Security domain. One example is “TINKER: A framework for Open source Cyberthreat Intelligence”. This 

research paper delves into creating a knowledge graph that is used primarily to “infer threat information 

from the [cybersecurity] text corpus”. This differs from our project in that it attempts to strictly capture 

malware information from CTIs (Cyber Threat Intelligence). Our project is aimed more for researchers and 

industry professionals to be able to query a knowledge graph of many entity-types (companies, vulnerably, 

malware) that is consistently updating with new information automatically. 

Some of the pros and cons of our target solution would be: 

1. Pro: Web Interface with query input and data visualization  

2. Pro: Updating periodically (e.g., every hour) with new cybersecurity information 

3. Con: Information sourced from reputable cybersecurity blogs instead of CTIs. 

Our project is not following previous work of any Senior Design project. 

4.1.3 Technical Complexity 

The design includes several components stored in Docker containers that collaborate to scrape website 

articles and construct the knowledge graph. These components include: 

1. Web scraper and parser: uses frameworks to make a request for pages in the source list and get the 

raw HTML. Then uses programming organization principles to find and extract the useful 

information from the document. This requires structural knowledge of web pages and analysis of 

how to clean the pages into useable data for the following step. 

2. Taxonomy definition and training Name-Entity Recognition Model: using the nltk and spacy 

libraries with Python along with our taxonomy definitions in order to perform natural language 

processing (NPL) and queries on the data. This requires scientific and mathematical knowledge of 

language processing and article tagging in order to create relationships for the graph. 

3. Relationship extraction to construct the graph and store in a database: Using the relationship data 

created above, use computer science principles to build a knowledge graph that has meaningful 

relationships between the nodes and is in a readable format. 

4. Running natural language queries on the completed knowledge graph: requires computer science 

and mathematical principles regarding AI and language comprehension that can query the graph 

with a search term and return meaningful results. 

5. Displaying knowledge graph and queries on frontend for consumption: Includes web programming 

principles and standards in order to host a page in the browser that can render the graph and 

provide a search feature for the natural language queries. Will need to efficiently display the results 

and scale based on the graph or query size. 

4.2 Design Exploration 

4.2.1 Design Decisions 

1. Potential Sources: The biggest decision in terms of potential sources we ran into were whe ther or not to 

include blogs as a source in our project as many cyber security professionals don’t have or never needed 

to obtain a college degree so the information, they put out isn’t in a well-structured or well-defined 

manner. Excluding these sources could be a problem later in the project because these cyber security 

blogs are rich with information. 



2. Cleanup: The cleanup of the text from sources is for training our Name -Entity-Recognition Model which is 

a crucial part of our project. This decision is important because we need a well-formatted text to train the 

NER. Avoiding the best decision for our cleanup process would be detrimental to training the NER.  

3. Taxonomy Definitions: Taxonomy is important in determining the scope of the project and which topics 

we should cover in the knowledge graph. We plan on utilizing the broader topics such as Vulnerabilities, 

Malware, and breaches but the decision comes down to including some of the smaller topics into our 

taxonomy like threat actors and phishing.  

4.2.2 Ideation 

 

For cleaning up documents to remove irrelevant information after they’ve been scraped and parsed, we 

considered several different options using the lotus blossom method for ideation.  

• Guess and Check – Repeatedly attempt to clean up the document until the output meets certain 

criteria or is within certain parameters. 

• Manual Annotation – Clean up a small set of documents by hand and then use that sample data to 

train a machine learning model to clean up documents. 

• Find sources with no irrelevant data – Get information from sources that are known to only contain 

relevant information, or are in a structured format (e.g., JSON, XML, etc.) which can be queried for 

relevant information in a standard way. 

• Do all cleanup by hand – Manually clean up all new articles every time one is added for as long as 

the project is running. Not a realistic solution. 



• Define parameters for an algorithm – Figure out how to clean up each source and write a program 

to do it automatically. Program may need to be rewritten when sources change website design. 

• Don’t do it – Output all data, even if it is irrelevant. The easiest “solution” to this problem, but may 

make later steps in the process more difficult since we have to work around all of the noise. 

4.2.3 Decision-Making and Trade-Off 

 

For deciding which data cleanup method to use, we made a table like above. The different methods added 

to a weighted decision matrix. We chose four main factors: accuracy, development time, development 

complexity and run time. Accuracy represents how accurate we predict the method to be. A lower number 

indicates that the method might have a high chance of improperly cleaning the data, leaving mistakes and 

invalid data. Accuracy was chosen as the most important factor, as good data is important for building 

machine-learning algorithms. Next, was development time, which represents how long it will take to 

implement the cleanup method. A lower number indicates that it will take a longer time to implement. 

Next is development complexity, representing how difficult the method is to develop or use. Lastly, is run 

time, which represents how long the cleanup method will actually run when cleaning up data. 


