

2 Project Plan

2.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our team has chosen agile as a project management style because our project goal of developing a

knowledge graph will require many iterations. New knowledge and metrics that we acquire during

sprints will help us better understand and plan for the next set of tasks we need to perform in the

next sprint.

Our team is going to use Git as a VCS and GitHub to host our repository. We will also be using JIRA

as a ticketing system to better track tasks, subtasks, sprints, backlog items, and responsibility for

each task.

2.2 TASK DECOMPOSITION

1. Determine list of sources to obtain news articles and blog posts.

a. Inspect sources for legitimacy and reputation

b. Record URLs of main page and/or specific pages of interest (e.g., Malware blog)

2. Develop scraper to obtain news articles, blog posts, etc., using Scrapy

a. Select a programming language

b. Select libraries to perform downloads and parsing of HTML

c. Create file specification for storing list of sources

d. Write code for scraper

e. Write testing code for scraper

f. Output artifacts for later use by NER model

g. Containerize with Docker

3. Develop one or more methods to clean up articles (may vary depending on type of article)

a. Research existing methods for cleaning up irrelevant information

b. (Potentially) Manually annotate relevant vs. irrelevant data in documents

c. Verify on test cases that relevant information isn’t being destroyed

4. Extract relevant entities (vulns, companies, software, exploits, etc.) and the relationships

between them

a. Research existing annotation techniques and cybersecurity-specific NER models

b. Determine if we need to train custom NER model

c. (Potentially) Train NER model:

i. Manually annotate set of documents from selected sources

ii. Perform supervised machine learning to train NER model

d. Generate entities and relationships from cleaned-up source information

5. Use extracted entities and relationships to generate knowledge graph

a. Collect output from Information Extraction

b. Insert into graph database

6. Run pipeline created in steps 2-5 periodically and continuously on new articles

a. Create job to run at interval

b. Determine if new articles of interest have been posted

c. Run new articles through pipeline

7. Develop a web interface to run queries on the graph

a. Design

i. Develop prototype

ii. Receive feedback from client

b. Develop

i. Select framework to make website

ii. Create API to query knowledge graph

iii. Implement designs from prototype

iv. Implement filters to query the graph

v. (Stretch goal) Use natural language to query the graph

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

1. Sources

1.1. 3 or more sources have been selected to scrape for information

2. Scraper

2.1. Scraper is able to download and parse input sources.

2.2. Runs inside Docker container.

2.3. Identifies more recent unprocessed articles with 100% accuracy.

3. Article cleanup

3.1. Articles achieve removing unnecessary information with 25% accuracy.

3.2. Articles achieve removing unnecessary information with 50% accuracy.

4. Extract entities and relationships

4.1. Software can identify subjects (companies, operating systems, vulnerability, etc.)

with 75% accuracy.

4.2. Software can identify relationships (vulnerability works on this OS and application

run by this company) with 50% accuracy.

5. Generate knowledge graph

5.1. Contains more than 15 entities including companies, operating systems,

applications, malware, etc.).

5.2. Nodes have properly labeled edges with 75% accuracy.

6. Pipeline periodic and continuous running

6.1. The job runs on the specific interval 100% of the time.

7. Web Interface

7.1. Prototype delivered to client with 80% satisfaction (satisfaction to be quantified

with rating survey).

7.2. API created to query 100% of knowledge graph entities and relationships.

7.3. Filtering by Company, Application, OS, Vulnerability, or Malware can be

performed.

7.4. (Stretch) Natural Language query is able to serve intended results 50% of the time.

2.4 PROJECT TIMELINE/SCHEDULE

Semester 1 Schedule

Semester 2 Schedule

2.5 RISKS AND RISK MANAGEMENT/MITIGATION

Description Likelihood Consequences Risk Mitigation

Training uses too

many resources

Unlikely Major High Optimize code, set

resource usage limits,
allocate more GPUs for
cluster

Model is trained

incorrectly

Moderate Moderate High Start early, involve

Michael in most
decisions due to

experience, Research

Source is too

difficult to perform
extraction

Moderate Moderate High Pre-scout source’s

format, plan extraction
logic ahead

Resources too high

to display query

Moderate Moderate High Limit number of

displayed responses

Sources go down or

block our traffic
because of too
much scraping too
fast

Likely Major Extreme Strict rate limits

2.6 PERSONNEL EFFORT REQUIREMENTS

Tasks This

Semester

Sources (1) Scraper

Design (2)

Clean Up

Articles (3)

Extract

Entities
and
Relations

(4)

Generate

Knowledge
Graph (5)

Total for

Semester 1

Estimated

Hours Per
Person

2 hours 15 hours –

Program
Team

10 Hours –

CybSec
Team

20 - 30

hours –
Both

Teams

(Varies

Greatly)

8 hours –

Both
Teams

68-78

Hours

− Program Team Consisting of: Brandon Richards, Michael Watkins, and Micah Gwin.

− CybSec Team Consisting of: Alice Cheatum, Nicklas Cahill, and Carter Kitelinger.

Based on the table above, we broke the hours down into what we thought we could finish in the

first semester. Using the tasks from the Task Decomposition section, we decided it would be best if
we split into two teams: the Program Team, handling most of the Python programming, and the
CybSec Team, handling most of the non-programming work that involves Cyber Security
knowledge. As provided in the table above, each team was given an estimated hours per person.

This also gives each team a different part to work on during sprints, since things can be worked on
in parallel.

